

保証規定 本製品は当社の厳密な製品検査に合格したものです。 納入後1年間に故障等により初期の目的、仕様を満たさなくなった場合で、その原因が弊社の 製造上の責任による場合は無償にて修理いたします。 お買い上げの商社または当社にお申し出ください。当社工場内にて修理いたします。測定精 度に関しては、納入後6ヶ月間保証します。 但し、次の場合には有償で修理させていただきます。 1. 本製品の説明書に記載された使用方法および注意事項に反するお取扱いによって生じた 故障・損傷の場合。 2. 当社の承認なく改造をした場合。 お客様による輸送、移動時の落下、衝撃等、お客様のお取り扱いが適正でないために 生じた故障・損傷の場合。 4. 火災・地震・水害等の天災地変による故障・損傷の場合。 5. 異常入力電圧により生じた故障・損傷の場合。 6. 技術者を派遣した場合。 ※この保証は本製品が日本国内で使用される場合に限り有効です。 This warranty is valid only in Japan

著作権について

本取扱説明書の内容は著作権法に基づき(株)計測技術研究所にその全ての権利があります。書面による許可なくまたその手段を問わず、複写等を行うことを禁止致します。

取扱説明書について

必ずご使用の前に、本書をよくお読みください。その上正しくお使いください。 本書はいつでも見られるように保存するようにしてください。 製品移動時には本書も必ず添付してください。

本書は、Load Station Series の出荷時の機能に対応した内容が記載されております。 従って、バーションアップ等による仕様変更等に伴い予告なく変更されることがあります。 あらかじめご了承ください。

高調波規制への適合について

本製品は業務用機器の為、高調波電流規制の対象外製品です。 高調波電流規制には対応していません。

登録商標

MicrosoftWindows、MicrosoftExcel、ActiveX、VisualBasic、VisualC++は米国 Microsoft社の米国 及びその他の国における登録商標です。

安全にご使用いただくために

本器を安全にご使用いただく為の注意事項です。 内容をご理解いただき、必ずお守りください。 当社では注意事項を守らなかった場合の事故、不適切な使用方法等によって発生した事故について の責任は、負いかねますのでご了承ください。

本器の内部には、高電圧など身体に危険を及ぼす箇所がありますの で、カバーやパネルなどを取り外すことはしないでください。

安全のために、爆発性および腐食性のガスが周囲にあるような環境 では使用しないでください。

強電磁界環境下での使用は機器の特性上入力ケーブルに誘起したノ イズも入力信号として測定されるため、測定値に影響をおよぼす恐 がありますので、強電磁界環境下での使用は避けてください。

結露した場合には完全に乾くまで本機を使用しないでください。

ほこりやチリの多い場所や、傾いた、あるいは振動のある場所での 使用は避けてください。 風通しの悪い場所での使用は避けてください。 本器は強制空冷のため、吸気ロや排気口を物で塞がないように周囲 に十分な空間を確保してください。

本器の入力電源電圧は、必ず定格範囲でご使用ください。 (本器入力定格 AC100V~240V 50/60Hz) また本器に付属された電源ケーブルをご使用ください。 (付属品電源ケーブル定格 AC125V) 海外で使用される場合は、その地域にあった形状及び電源電圧に適 した電源ケーブルを使用してください。

本器はACインレットにあるヒューズを交換することができます。 交換する場合は、本器に適合した形状、定格及び特性のヒューズを ご使用ください。(本器ヒューズ定格 250V/3.15A)

オペレータ

本器は、適切な電気知識のある方が十分に本書の内容を理解した上 でご使用してください。 電気的知識がない方が使用する場合は、必ず電気的知識を有する 方の監督下にてご使用ください。

GPIB機器との接続、取り外しの際には、必ず各々の機器の電源を 切断して行ってください。

移動

電源スイッチを OFF し、配線ケーブルをすべて外してから移動し てください。

本器を移動する際は、取扱説明書も添付してださい。

本器を輸送する場合には、必ず専用の梱包材を使用してください。

専用の梱包材が無い場合は同等以上の梱包材を使用してください。

保守・点検を行う際は感電事故を防ぐ為に、必ず電源プラグを抜 いてください。

本器の安全性を維持する為、定期的な保守、点検、清掃をお勧めします

また本器の性能を維持する為、定期的な校正をお勧めします。

本器のコネクタ及び入力端子を、本書に記載されている用途以外で 使用しないでください。 また、仕様範囲外の電圧を印可しないでください。

本器の修理や調整は弊社にて行います。 修理や調整が必要な場合は、購入元の代理店または弊社へご連絡 ください。

安全記号(マーク)について

本器を安全に正しくお使いいただくため、本書及び製品には次のような記号を使用しております。 記号の意味をご理解いただき、常に安全に心がけてご使用いただくようお願いいたします。

本器及び本書で使用しているシンボルラベルで警告・危険・注 意すべき箇所または、内容を知らせる記号です。 本器上にこのラベルが表示さている場合は、本取扱説明書の該 当箇所を参照する必要があることを示します。

正しく操作しないと、使用者が重度の人身障害(死亡や重症な ど)を負う可能性がある事を示します。記載内容を十分にご理 解頂いてから、手順に従ってください。

正しく操作しないと、本器や他の接続機器の損傷及び、使

軽度の人身障害につながる可能性があることを示します。 記載内容を十分にご理解頂いてから、手順に従ってくださ

w.

はじめに

<u>本書について</u>

本書は、Load Edge Seriesの下記の製品について、説明しています。

- ELL-355 30V-135A-350W
- ELL-1005 30V-405A-1000W

取扱説明書の構成について

本取扱説明書は、つぎのように構成されています。

<u>第1章 製品の概要</u> 本器の概要及び特徴を紹介します。

第2章 接続について

本器の性能を十分な状態でご使用して頂く為に、接続についての注意事項を説明します。

第3章 各部の名称と機能 本器正面にある端子台やスイッチについて名称と機能について説明します。

第4章 操作方法 操作パネルの名称及び機能と、I/O 設定、メモリー機能について説明します。

第5章 負荷モードの操作方法 各負荷モードの操作方法を説明します。

第6章 測定モードの操作方法 各測定モードの操作方法を説明します。

第7章 アラーム 本器の保護機能及び、アラームについて説明します。

第8章 リモートコントロール GPIB 及び USB のコマンドについて説明します。

第9章 並列運転

<u>第10章 仕 様</u>

本器の電気的仕様、機構的仕様、一般仕様について説明します。

第11章 保守・校正 本器の保守、点検及び校正について説明します。

開梱時のご確認

開梱しましたら、輸送中における破損がないか、また付属品が正しく添付されているか ご確認ください。

万一、本器の破損及び添付品の欠品がございましたら、すぐに購入元の代理店または弊社 へご連絡ください。

本製品には下記の付属品が添付されております。

□取扱説明書(M-2161)

□入力電源コード(3P、2m)

□3P-2P 変換プラグ

□リモートセンス端子台カバー (製品に取り付けられています。)

□CD-ROM (USB Driver など)

□BOOSTER 接続ケーブル

□負荷入力端子用ネジセット 2組 (製品に取り付けられています。)

移動時の注意

本器の移動の際は、下記のように取っ手を持ってください。

Load Edge Series

目 次

安全にご使用いただくために
安全記号(マーク)について
はじめに
本書について
取扱説明書の構成について7
開梱時のご確認
移動時の注意
目 次10
第1章 製品の概要14
1.1 概 要14
1.2 特 徵14
1.3 アプリケーション例15
1.4 オプション15
1.5 Extreme Power 技術(特許出願中)について16
第2章 接続について18
2.1 電源コードの接続
2.2 ケーブルの接続19
2.3 高速な負荷応答を実現するには
2.4 CURRENT MONITOR の接続25
2.5 TRIG OUT の接続
第3章 各部の名称と機能
3.1 フロントパネル
3.1.1 表示器の内容
3.2 リアパネル
3.3 サイドパネル
第4章 操作方法
4.1 操作パネルの説明
4.2 メニュー選択機能
4.3 LOAD CONTROL

4.4	I/O 設定
4.5	メモリ機能
第5章	負荷モードの操作方法
5.1	負荷モードの変更
5.2	負荷設定の変更40
5.3	応答時間の変更
5.4	電流リミット機能43
5.5	定電流(CC)モードでの使用方法44
5.6	定抵抗(CR)モードでの使用方法45
5.7	定電圧(CV)モードでの使用方法47
5.	7.1 CV+Climit ついて
5.8	定電力(CP)モードでの使用方法49
5.9	指定電圧による負荷モード切り替えの使用方法51
5.10	外部制御(EXT)モードでの使用方法53
5.11	短絡(SHORT)モードでの使用方法54
5.12	動的負荷 (DYNAMIC) モードでの使用方法55
5 1 2	動的自告(シーケンフ)エードでの使用古法 69
0.10	動的負荷(シークシス)に一下での使用力伝
第6章	凱討員術(シークシス) モードての使用方法
5.15 第6章 6.1	測定モードの操作方法
5.13 第6章 6.1 6.2	 動的資荷(ワイクラス)・ビードでの使用方法
第6章 6.1 6.2 6.3	 副助貨術(ワイクワス)・ビードでの使用方法
第6章 6.1 6.2 6.3 第7章	 動的資荷(ワイクラス)・ビードでの使用方法
第6章 6.1 6.2 6.3 第7章 7.1	 動的資荷(ワイサウス)・モードでの使用方法
第6章 6.1 6.2 6.3 第7章 7.1 7.2	動的貨桶 (シャクシス) モード (の使用方法
第6章 6.1 6.2 6.3 第7章 7.1 7.2 7.3	動的貨筒 (シーケンス) モード (の使用方法
第6章 6.1 6.2 6.3 第7章 7.1 7.2 7.3 7.4	動的貨術 (シーケシス) セード (の使用方法
第6章 6.1 6.2 6.3 第7章 7.1 7.2 7.3 7.4 7.5	動的資価(シークシス)やビード CO使用力伝 62 測定モードの操作方法 68 測定値の表示の変更方法 68 サンプリングレートの設定 69 電圧、電流レンジの設定 69 アラーム 72 過電流リミット 72 過電圧アラーム 73 温度アラーム 74 逆接続アラーム 75 アラームの解除 76
第6章 6.1 6.2 6.3 第7章 7.1 7.2 7.3 7.4 7.5 7.6	動助貨桶 (シーウンス) モード CO使用力法 62 測定モードの操作方法. 68 測定値の表示の変更方法. 68 サンプリングレートの設定. 69 電圧、電流レンジの設定. 69 アラーム. 72 過電流リミット. 72 過電圧アラーム. 73 温度アラーム. 74 逆接続アラーム. 76 瞬間電力制限状態. 76
第6章 6.1 6.2 6.3 第7章 7.1 7.2 7.3 7.4 7.5 7.6 7.7	動的負制 (シャッシス) モード CORFINE 66 測定を一ドの操作方法 68 測定値の表示の変更方法 68 サンプリングレートの設定 69 電圧、電流レンジの設定 69 アラーム 72 過電流リミット 72 過電圧アラーム 72 過電圧アラーム 73 温度アラーム 74 逆接続アラーム 76 Fj 76 瞬間電力制限状態 76 電力制限状態の解除 77
 第6章 6.1 6.2 6.3 第7章 7.1 7.2 7.3 7.4 7.5 7.6 7.7 第8章 	動的貨商(ワークラス) モード CO使用力払66測定框 - ドの操作方法68測定値の表示の変更方法68サンプリングレートの設定69電圧、電流レンジの設定69アラーム72過電流リミット72過電圧 アラーム73温度 アラーム74逆接続 アラーム75アラームの解除76瞬間電力制限状態76電力制限状態の解除77リモートコントロール78

8.2 測定コマンド	
8.3 負荷設定コマンド	
8.4 システムコマンド	
8.5 マルチラインメッセージ	
8.6 ステータスレジスタ	
8.7 GPIB サンプルプログラム例	
8.8 USBインターフェイス	
8.9 ActiveX コントロール関数リファレンス	
8.10 Excel からの ActiveX コントロール使用方法	
8.11 USB サンプルプログラム	
第9章 並列運転	
9.1 並列運転	
9.1.1 並列運転の接続方法	
9.1.2 並列運転の接続手順	
9.1.3 マスタ/スレーブの設定手順	
9.1.4 接続機器の確認	
9.1.5 並列運転時のアラーム	
9.1.6 並列運転時のスルーレート	
9.1.7 並列運転の解除	
9.2 マルチチャンネル同期運転	
9.2.1 マルチチャンネル同期運転の接続方法	
9.2.2 マルチチャンネル同期運転の接続手順	
923 マルチチャンネル同期運転の設定手順	107
924 接続機器の確認	110
925 マルチチャンネル同期運転のアラーム	110
9.2.6 マルチチャンネル同期運転の解除	111
第 10 音 H 样	111
101 — 船什様	
10.2 测定立家	
10.2 例定印	
10.6 具间司	
10.4 出力部	

10.5 外形寸法図	118
10.6 動作領域	120
第 11 章 保守・校正	122
11.1 清 掃	122
11.2 ヒューズの交換	122
11.3 入力電源コード	124
11.4 校 正	124
11.5 保 管	124

第1章 製品の概要

1.1 概 要

Load Edge Series は弊社独自の新方式負荷回路により、低電圧・高速応答を実現した高性能電子 負荷です。更に弊社独自の Extreme Power 技術により、短時間の瞬時大電力負荷から中時間の連 続定格電力を超える用途まで対応し応用範囲を大幅に拡大しました。

従来の直流安定化電源以外にも、燃料電池や太陽電池など多様なアプリケーションにご利用いただ ける、次世代型高性能電子負荷装置です。

1.2 特 徴

- ・ 負荷端子をフロント・パネルに配置し接続が容易です。
- ・ 50 A/μ s(ELL-355)の高速な負荷応答が可能です。(端子台電圧 5V 以上)
- ・ Extreme Power 技術により、短時間の負荷電力を大幅に拡大しました。(最大 4000W: ELL-355)
- ・ 300KHz まで 3dB 以内の周波数特性を維持します。(外部制御:AC+オフセット電圧時)
- ・ 最小動作電圧の概念はありません。電位差があれば動作可能です。
- ・ 世界各地で御利用頂けるワールドワイド入力(100V~240V 50/60Hz)
- ・ 定電流、定抵抗、定電圧、定電力、ダイナミック制御、外部制御、短絡モードをサポート。
- ・ ダイナミック制御では、単発・連続動作をサポート。
- インターフェイスに USB、GPIB を標準装備。
 USB ケーブルの接続のみで、パソコンでの自動計測システムが容易に実現可能です。
 GPIB の利用にて既存のシステムへ簡単に設置ができます。
- ・ アラーム機能も充実。過電圧、逆接続、温度アラームがあります。
- ・ 電流リミット機能にて、"CV+Climit(電流リミット)"の動作可能。
- ・ メモリ機能により任意の測定・設定条件を6つまで記憶することができます。
- リップルノイズ測定機能を追加実装することができます。 測定方法は弊社独自の方式によるもので、オシロスコープによる測定と比較すると個人差がなく、また短時間で行えます。(工場出荷オプション)

高速な負荷応答を実現するためには接続や負荷電圧、設定電流について注意事項があります。 詳細は→ "2.3 高速な負荷応答を実現するには"をご参照ください。

<u>1.3 アプリケーション例</u>

本器を使用したアプリケーションは多岐に渡りますが、一例を下記にご紹介します。

- ・ マイクロプロセッサ用、低電圧電源の試験
- ・ 大電流高速パルス負荷試験
- ・ 太陽電池の特性試験
- ・ 負荷スイッチの置き換え
- ・ バッテリ充放電試験/寿命試験
- ・ コンデンサ評価試験
- ・ 電流センサ評価試験
- ・ リレー評価試験
- ・ 電気二重層コンデンサの評価試験
- 燃料電池 I-V 特性評価
- ・ 燃料電池交流インピーダンス測定
- ・ パワー半導体評価試験

1.4 オプション

以下のオプションを用意してあります。用途に合わせご用命ください。

低インダクタンスケーブル

型名	長さ	耐圧	電流容量	直流抵抗	インタ゛クタンス
LL-050	50cm	500V	100A	$1 \mathrm{m}\Omega$	80nH
LL-100	100cm	500V	60A	$2 \mathrm{m}\Omega$	100nH
LL-200	200cm	500V	40A	$4 \mathrm{m} \Omega$	130nH

※直流抵抗及びインダクタンス値は(Typ)値となっています。

リップルノイズ測定モジュール

RC-02A(工場出荷オプション)

LL-050、LL-100、LL-200の低インダクタンスケーブルは受注生産品となっています。 リップルノイズ測定モジュールは工場出荷オプションです。電子負荷御購入の際に御指定下さい。 単体での購入はできません。

etc,

オプションに関する詳細は、購入元の代理店または弊社までお問い合わせください。

1.5 Extreme Power 技術(特許出願中) について

Extreme Power の原理

従来の電子負荷はいかなる瞬間も印加電圧と負荷電流の積で決まる瞬時電力が定格電力を超えることはできませんでした。

しかし電子負荷内部のデバイス保護技術の進歩により、最大限に許容電力を引き出す事が可能になったため、従来は不可能とされていた定格電力の壁を越えることが出来るようになりました。

一般的な供試電源の負荷変動試験や過電流試験をはじめとするほとんどの試験では最大負荷電力を 要求されるのは概ね2~20(中時間)秒程度です。

試験全体としては最大負荷、軽負荷、無負荷など負荷条件を変更して各種の総合試験が行われるため試験全体で見た場合、単位時間当たりの電力=平均電力は低くなります。

Extreme Power 技術は平均電力が規定の範囲を超えなければ、定格電力を大幅に超えた負荷状態で も連続運転することも可能する技術です。仮に許容時間を超える負荷運転がされたとしても、万全 の保護回路によって電子負荷装置を破壊するようなこともなく、保護回路の動作状況モニタによっ て動作領域内かどうか確認することが出来ます。

最大負荷と、通電時間の関係

平均電力の算出方法は以下の図の様になります。

Load Edge Series では、モデルにより最大負荷電力が異なります。

モデル	20 µ s 以内	20 秒以内	定格電力
ELL-355	4000W	430W	350W
ELL-1005	12000W	1290W	1000W

例えば、2KW 100µs幅のパルス負荷が500µs周期で繰り返す場合、平均電力は

$2KW \times (100 \,\mu\,s \div 500 \,\mu\,s) = 400W$

となるので 20 s まで許容することができます。

また、400W で 20s 使用した後に休止時間が 3s 以上あれば

500W \times (20s \div (20s + 3s)) \doteqdot 348W

と平均電力が350W以下となるため繰り返し運転することができます。

第2章 接続について

本器の性能を十分な状態でご使用して頂く為に、接続についての注意事項を説明します。

2.1 電源コードの接続

付属品のAC電源コードは単相AC100V用3極プラグ付き電源コードが添付されています。 プラグの接続の際は感電の危険がありますので、十分に注意してください。

2.2 ケーブルの接続

注記

TARGET DEVICE:供試電源や試験物など SG:シグナルジェネレータ(基準電圧源や発振器など) (1) リモートセンスケーブル

リモートセンスケーブルは必要に応じて接続してください。

リアパネルに有る、 リモートセンス選択スイッチを EXT(外部センス)にした場合は 必ず接続する必要が有ります。接続にはシールド線やツイストケーブルなどを使用し極性に 注意して接続してください。

・ 接続の際は必ず、TARGET DEVICE の出力が OFF の時に行ってください。

 リモートセンス端子を使用する場合には、リモートセンス選択スイッチを必ず "EXT"に設定してください。リモートセンス端子を使用しない場合は、リモート センス選択スイッチを必ず"INT"に設定してください。異なった設定となってい る場合、正常に測定、設定及び電力保護が効かなくなります。

(2) 負荷ケーブル

下図のように本器に付属された六角ナット及び六角ボルトで接続してください。接続に は最短距離で電流容量に見合ったケーブルを使用してください。長くなる場合、ケーブ ルを必ずツイスト処理をして接続してください。

> 十字穴付き六角ボルト (M8×20 Wセムス Niメッキ

フランジ付き六角ナット(M8 Niメッキ)

図 2-2-3 負荷端子台への接続方法

負荷電流 Io(A)	使用線材サイズ
Io≦10A	16AWG 以上
10≦Io≦30A	12AWG以上
$30 \leq Io \leq 60A$	8AWG 以上
$60 \leq Io \leq 100A$	7AWG 以上
100≦Io≦135A	6AWG 以上

表 2-2-1 負荷ケーブル推奨線材サイズ

 ・ 感電の危険がありますので、通電中、負荷端子に触れないでください。本器は前面 負荷端子と後面負荷端子が内部で連結されている為、一方に入力された電圧は、も う一方に出力されます。

前面負荷端子と後面負荷端子へ同時にターゲットデバイスを接続しないでください。 故障する危険があります。

- ・ 逆接続した場合、本器は短絡状態となりアラームによる警告が表示されますが、最 大定格電流を超えた場合には故障する可能性があります。
- 入力電圧範囲内で必ず使用してください。本器はアラームによる警告が表示されますが、範囲外の電圧を入力した場合には故障する可能性があります。
- (3)外部制御ケーブル 接続にはツイストケーブルを使用してください。 使用電線について、下記に記載したものを使用してください。 本入力は直流信号入力です。場合により交流信号を入力する際には、オフセット電圧を 入力交流信号に重畳し、0Vを下回らないようにしてください。 入力電圧範囲内は0~10V、DC~100KHz(3dB)の範囲で使用してください。

使用電線 単線:φ0.4~φ1.2 (AWG26~AWG16) 撚線:0.3mm²~1.25mm² (AWG22~AWG16) 素線径φ0.18以上

ストリップゲージ

図 2-2-4 使用電線のストリップゲージと接続方法

• 入力電圧範囲内(0~10V)で必ず使用してください。範囲外の電圧を入力した場合 には故障する危険があります。

2.3 高速な負荷応答を実現するには

本器の高速応答性を十分に発揮する為に、以下の点に注意してください。

1. インダクタンスの影響について

負荷ケーブル及び本器自身の内部インダクタンスにより生じる逆起電力は電圧を降下させ、 立ち上がり時間に大きく影響します。当然ですが電圧降下により端子間電圧が低くなりすぎ ると電位差が無くなるため電流を引くことができなくなります。

本器の内部インダクタンスは非常に低い物ですが"0"では無いため端子間に電位差が必要 となります。接続ケーブルのインダクタンスによっても電圧降下は発生しますので必要な端 子間電圧を得るために負荷ケーブルのインダクタンスをなるべく低くするようにしてくだ さい。

端子間電圧 Vin(V)	設定スルーレートα
$5V \leq Vin$	$50 \text{A}/\mu \text{ s} = \alpha \text{ (Typ)}$
$4V \leq Vin$	$40 \text{A}/\mu \text{ s} = \alpha \text{ (Typ)}$
3V≦Vin	$30 \text{A}/\mu \text{ s} = \alpha \text{ (Typ)}$
2V≦Vin	$20 \text{A}/\mu \text{ s} = \alpha \text{ (Typ)}$
1V≦Vin	$10 \text{A}/\mu \text{ s} = \alpha \text{ (Typ)}$

表 2-3-1 端子間電圧における最大設定スルーレート

注 記 ・ 配線上のインダクタンスを低減するには、オプションの低インダクタンスケーブル を御利用ください。例えば LL-050 では 80nH (Typ) と一般のケーブル(7AWG 相 当)に比べ、1/5程度(Typ)インダクタンスを軽減することができます。 詳しくは15ページのオプションについての項を御覧ください。

 設定負荷電流の影響について 本器の特性上、設定する負荷電流値によっては、スルーレートに影響を与えます。 このスルーレートと設定負荷電流値の関係を最小負荷応答時間と呼んでいます。 最小負荷応答時間の制限により、スルーレートは設定値よりも遅くなる場合があります。 ELL-355を代表とし、最小負荷応答時間について以下に説明します。

図 2-3-1 スルーレートと負荷電流の関係(ELL-355)

スルーレート: $50A/\mu$ s、負荷電流: 50A に設定した場合、図 2-3-1 の 50A のラインとな ります。これは 1μ s あたり、50A の変化量を表した波形図を意味しています。 スルーレート: $50A/\mu$ s、負荷電流: 10A と設定した場合図 2-3-1 では 10A のラインとな ります。この場合 200ns あたり 10A の変化量を表した波形図となることが理想ですが、実際は 500ns あたりの変化量となります。その為スルーレートが約 $25A/\mu$ s となり、設定し た $50A/\mu$ s より遅くなってしまいます。

この 500ns のことを最小負荷応答時間と呼び、設定できる最小負荷応答時間として明記して います。最小負荷応答時間を下回るような負荷電流を設定した場合、立ち上がり時間は 500ns に固定され、設定されているスルーレートより遅いスルーレートで動作します。

例えばスルーレート 50A/μ s、25A の負荷電流値では立ち上がり時間は 500ns となり、設 定できる最小負荷電流となります。しかし前述の 10A の負荷電流では、理想 200ns に対し 500ns の固定値となってしまい、スルーレートは設定値より遅くなってしまいます。

下表では、スルーレートに対して設定できる最小の負荷電流を明記しています。 (※最小負荷電流 = スルーレート×1/2の関係となっています。)

設定スルーレートα	最小負荷電流 I
$\alpha = 50 \text{A}/\mu \text{ s} \text{(Typ)}$	I = 25A (Typ)
$\alpha = 40 \text{A}/\mu \text{ s} \text{(Typ)}$	I = 20A (Typ)
$\alpha = 30 \text{A}/\mu \text{ s} \text{(Typ)}$	I = 15A (Typ)
$\alpha = 20 \text{A}/\mu \text{ s (Typ)}$	I = 10A (Typ)
$\alpha = 10 \text{A}/\mu \text{ s} \text{(Typ)}$	I = 5A (Typ)

表 2·3·2 スルーレートにおける最小設定負荷電流値(ELL-355)

2.4 CURRENT MONITORの接続

CURRENT MONITOR 信号は、オシロスコープで波形を観測するときの電流波形モニタとして使用します。

・オシロスコープとの接続について

本器をオシロスコープに接続してご使用になる場合、必ず図 2-4-2 の様にプローブの極性 に注意して接続してください。

図 2-4-2 (正)オシロスコープとの接続

2.5 TRIG OUT の接続

TRIG OUT 信号は、オシロスコープでダイナミック動作の波形を観測するときのトリガ信号として使用します。

図 2-5-1 TRIG OUT 出力と電流波形の関係

第3章 各部の名称と機能

本器正面にある端子台やスイッチについて名称と機能について説明します。

3.1 フロントパネル

図 3-1-1 フロントパネル

(1) 表示器

128x64 dot の白黒 LCD パネルです。設定値や測定値などを表示します。

- (2) 操作パネル ファンクションキーと、選択や値の増減を行うロータリーノブ及び、値の設定に使用するテンキーからなります。詳細は→ "第4、5、6章"の各操作方法を参照してください。
- (3) 前面負荷端子 負荷入力端子台です。この端子では電圧を正しく測定できません。電圧測定は専用のリモー トセンス端子を使用してください。 接続についての詳細は→ "2.2 ケーブルの接続"を参照してください。
- (4) <u>吸気口</u> 冷却用の空気を取り込みます。
 吸気を妨げるような物を前に置かないようにしてください。
- (5) <u>電流モニタ出力</u> 負荷電流の状態をモニタするための電圧出力端子です。 詳細は→ "<u>2.4 CURRENT MONITOR の接続</u>"を参照してください。
- (6) <u>トリガ出力</u> ダイナミック動作時に負荷の変化のタイミングに合わせたトリガ信号を出力します。 この信号は絶縁出力となっています。
- (7) <u>電源スイッチ</u> 本器の電源を ON/OFF をするスイッチです。

<u>3.1.1 表示器の内容</u>

図 3-1-2 LCD の表示内容

- (1) <u>電圧レンジ</u> 現在の電圧レンジの状態を表示します。LOW レンジ、HIGH レンジの何れかの表示になり ます。
- (2) 電流レンジ

現在の電流レンジの状態を表示します。LOW レンジ、HIGH レンジの何れかの表示になります。

エデル	電圧レンジ	電流レンジ
	Low/High	Low/High
ELL-355	4V/30V	15A/135A
ELA-1005	4V/30V	45A/405A

表 3-1-1 モデルによる電圧・電流レンジの違い

(3) 測定値

Load Edge Series は同時に2つの測定値を表示します。表示内容は選択できます。この図 3-1-2 では上段に端子電圧を、下段に電流値を表示しています。

- (4) <u>ファンクションボタン</u> F1~F3に割り当てられているボタンの機能を表す文字又はアイコンが表示されます。
 この表示は各機能の呼び出しに応じて変化します。
- (5) <u>負荷設定値</u>

現在の負荷設定値を表示します。ダイナミック動作時は表示が"DYNAMIC"となります。

(6) <u>応答速度設定値</u> 現在の応答速度の設定値を表示します。応答速度の指定ができないモードの場合"----"が表示 されます。

- (7) <u>負荷モード</u>
 現在の負荷モードを表す略称が表示されます。略称の意味は以下の通りです。
 CC 定電流モード
 - CR
 定抵抗モード
 - CV 定電圧モード
 - CV
 正電圧モード

 CP
 定電力モード
 - EX 外部制御モード
 - ST ショートモード(短絡)
- (8) <u>ロータリーノブによる負荷設定増減幅を示すアイコン</u> 特定の操作中で無い場合ロータリーノブを回すと負荷設定が増減します。その増減幅はユーザーが 選択できます。このアイコンは現在の増減幅を示します。表示されるアイコンと幅の関係は以下の 通りです。

	00.0001
	00.0010
. .	00.0100
•• •••	00.1000
<u></u>	01.0000
	10.0000

増減幅はモードには依存しません。

(9) <u>制御信号受信表示</u>
 本器が外部から制御されていることを表示しています
 このマークが表示中はパネル面から手動で設定出来ません
 このマークを消去し手動で設定する場合は

3.2 リアパネル

図 3-2-1 リアパネル

(1) <u>INPUT 入力コネクタ</u>

オプション RC-02A(リップルコンバータ)を内蔵時に BNC コネクタが実装されます。 ※ オプションが無い場合はカバーで塞がれています。

- <u>GPIB コネクタ</u> IEEE488.1 に準拠した I/F です。一般的な GPIB コントローラなどから制御ができます。
- (3) <u>USB コネクタ</u>

パソコンと接続するためのコネクタです USB1.1 規格に準拠しており添付のデバイスドライバと 制御ライブラリによりパソコンから簡便にリモート制御する事ができます。 詳細は→ "<u>第8章 リモートコントロール</u>" をご参照ください。

- (4) <u>ACインレット</u> 付属の電源コードを接続し、電源を供給するコネクタです。入力電圧範囲は 100V~240V のワール ドワイド入力です。
- (5) <u>排気口</u>

フロントから取り込んだ空気を排気します。正常に冷却されるよう、排気口をふさぐような物を傍 に置いたり、狭い場所に設置しないでください。

(6) <u>BOOSTER</u>

並列運転時に使用します 詳細は→ "<u>第9章 並列運転</u>"をご参照ください。

(7) <u>外部制御入力端子</u>
 外部制御電圧入力用コネクタです。入力電圧範囲は 0~10V です。
 詳細は→ "<u>5.9 外部制御(EXT)モードでの使用方法</u>"をご参照ください。

- (8) <u>リモートセンス端子</u> 電圧要素が必要な負荷モード(CR、CV、CPモード)及び、電圧測定において使用する 電圧センス用端子です。<u>リモートセンス選択スイッチ</u>が EXT の場合は必ず接続して使用して ください。接続しない場合、正常に測定及び設定ができなくなります。
- (9) <u>リモートセンス選択スイッチ</u> 電圧要素が必要な負荷モード(CR、CV、CPモード)及び、電圧測定において使用する 電圧センス信号選択スイッチです。
 - EXT 図 3-2-1 リアパネルの(8) に接続された電圧信号を選択します
 - ・INT 図 3-1-1 フロントパネルの(3) に接続された電圧信号を選択します

- リモートセンス端子を使用する場合には、リモートセンス選択スイッチを必ず "EXT"に設定してください。リモートセンス端子を使用しない場合は、リモート センス選択スイッチを必ず"INT"に設定してください。異なった設定となってい る場合、正常に測定、設定及び電力制限が効かなくなります。
- 3.3 サイドパネル

図 3-3-1 サイドパネル

(1) 吸気口

冷却用の空気を取り込みます。吸気を妨げるような物を前に置かないようにしてください。

 (2) <u>取手</u> 運搬する際にはここを持って運搬してください。

第4章 操作方法

操作パネルの名称及び機能と、メニュー選択、メモリ機能、環境設定について説明します。

4.1 操作パネルの説明

図 4-1-1 操作パネル

- (1) ファンクションキー メニュー毎に割り振られる機能を呼び出すのに使用します。
- <u>数値入力テンキー</u> 負荷電流の設定など値の設定を行います。
- (3) <u>ロータリーノブ</u> 設定値の増減や、選択項目の変更に使用します。またこのノブの軸は押しボタンになってお り変更の決定などにも使用します。
- (4) <u>ON/OFF スイッチ</u> 負荷機能を ON/OFF するスイッチです。ON の時、LED が点灯します。
- (5) <u>ENT キー</u>
 数値入力や選択した条件を確定する場合に使用します。
- (6) <u>CE キー</u> 数値入力や選択中のコマンドをキャンセルする場合や、リモートコントロールから パネル操作(ローカル操作)への切り替え、アラームのキャンセルなどに使用します。
- (7) メニューキー メニューを選択する場合に使用します。

4.2 メニュー選択機能

Load Edge Series には以下の3つの基本メニューがあります。

必要な操作を行うためには先ず適切なメニューモードを選択する事が必要です。 メニューを選択するにはメニューキーを押し、メニュー選択画面を呼び出します。

図 4-2-1 メニューの選択画面

初期画面では現在のメニューモードの名称に下線が引かれ選択状態に有ることを示しています。続けてメニューキーを押すかロータリーノブを回すと下線の位置が移動します。目的のメニュー名称に下線が引かれた状態で ENT キー又はロータリーノブを押すとそのメニューが呼び出されます。

メニュー選択をやめる場合は CE キーを押します。

4.3 LOAD CONTROL

LOAD CONTROL は以下の機能からなります。

- ・メンテナンス機能の選択
 ・スルーレート(SR)の設定
 ・動的負荷(DYNAMIC)モードの設定
 を行います。
- (1) メンテナンス機能の選択

"<u>4.2 メニュー選択機能</u>"にある方法で LOAD CONTROL メニューを呼び出します。 この状態でファンクションキーの F1 キーを押すと更にメニュー選択画面が表示されます。 更に F1 キーを押すとメニューのページが表示されます

- □□□ メニューページ切替
- ▲ 電流リミット設定
- 同応 マスタースレーブ設定
- 図 4-3-2 メニューページ画面 1

- 図 4-3-3 メニューページ画面 2
- (2) 電流リミットの設定

メニューページ画面1でF2キーをONすることにより電流リミットの設定を行います 電流リミットの設定についての詳細は、<u>5.4 電流リミット機能</u> をご参照ください。

[🔟] メニューページ切替

- (3) <u>マスタースレーブ設定</u> メニューページ画面1でF3キーをONすることによりマスタースレーブのモードを選択 出来ます。 選択後 ENT キーで決定します。
 - ・NORMAL 本器単体での基本的使用方法です
 - MASTER Load Edge Series を同一機種、複数台使用時マスタ器となり他の スレーブ器をブースト制御します
 - MULTI Load Edge Series を複数機種、複数台使用時マスタ器となり他の スレーブ器を同期制御します

図 4-3-4a メニューページ画面1a

図 4-3-4c メニューページ画面 1 c

(4) バージョン情報表示

メニューページ画面2でF2キーをONすることにより本器のバージョン情報を確認できます

<u>4.4 I/0 設定</u>

I/O 設定は以下の機能からなります。

- ・GPIBアドレスの設定
- ・表示器(LCD)のコントラストの設定
- ・表示器(LCD)のバックライトの明るさの設定
- (1) GPIB アドレスの設定

"<u>4.2 メニュー選択機能</u>"にある方法で I/O – MEMORY メニューを呼び出します。 この状態でファンクションキーの F1 キーを押すと I/O 設定用のメニューが表示されます。

図 4-4-1 I/O メニュー設定方法

アドレスを変更するには続けて F1 キーを押します。 変更するための枠が表示されますので、F1 又はロータリーノブにより希望するアドレスに 設定してから ENT キー又はロータリーノブを押します。

図 4-4-2 GPIB アドレス設定方法

- (2) 表示器(LCD)のコントラストの設定
 - I/O メニューの F2 キーを押します。コントラストの変更枠が表示されますので F2 又はロー タリーノブにより希望するコントラストにして ENT キー又はロータリーノブを押します。

図 4-4-3 コントラスト設定方法

表示器(LCD)のバックライトの明るさの設定

I/O メニューの F3 キーを押します。バックライトの変更枠が表示されますので F3 又はロー タリーノブにより希望するコントラストにして ENT キー又はロータリーノブを押します。

図 4-4-4 バックライトの明るさ設定方法

4.5 メモリ機能

Load Edge Series は現在の設定を6つまで保存し、任意に呼び出す事ができます。 保存されるパラメータは

- ・現在選択されている負荷モード
- ・モード毎の負荷設定値
- ・モード毎の負荷応答速度
- ・電流リミット値
- ・ダイナミック動作パラメータ

になります。

(9) STORE 設定

I/O – MEMORY メニューで F2 キーを押すと保存場所の番号の設定枠が表示されますので F2 又はロータリーノブにより希望する保存番号にした上、ENT キー又はロータリーノブを 押します。

- ・ 同じ番号で既に保存されている設定は上書きされます。
- (10) <u>RECALL 設定</u>

I/O – MEMORY メニューで F3 キーを押すと保存場所の番号の設定枠が表示されますので F3 又はロータリーノブにより希望する保存番号にした上、ENT キー又はロータリーノブを 押します。

図 4-5-2 RECALL 設定方法

第5章 負荷モードの操作方法

本器には、定電流(CC)モード、定抵抗(CR)モード、定電圧(CV)モード、定電力(CP) モード、外部制御(EXT)モード、動的負荷(DYNAMIC)モード、ショート(SHORT) モードの7種類の負荷動作モードがあります。どのモードを使用するか確認し、負荷動作モードに あった手順で、使用してください。

- ・ 負荷モードの選択の際には、LOAD ON/OFF スイッチを OFF にしてください。
- 負荷設定条件によっては短絡に近い状態になり、供試電源を破壊する恐れがありま す。

モードの変更は"<u>4.2</u>メニュー選択機能"で説明した基本メニューに依存しません。どの基本メニ ューが表示されている画面からでも変更ができます。但し I/O メニューが表示されている場合は I/O 設定中となっていますので変更はできません。基本メニューが表示された通常の状態に於いて操作 可能になります。

5.1 負荷モードの変更

負荷モードの選択はロータリーノブを押すことにより行います。ロータリーノブを1回押すと負荷モードの左側に"MODE"と表示されモード選択状態に入った事を示します。

図 5-1-1 モード選択操作手順

この状態でロータリーノブを回すと選択可能なモードが表示されます。ここで選択できるモードは 6モードです。ロータリーノブが1周すると最初のモードの表示に戻ります。

希望するモードが表示された状態で ENT キー又はロータリーノブを押すとそのモードに切り替わります。

またモード選択を確定する前にそのモードでの設定値を同時に設定することもできます。希望するモードが表示された状態のまま、テンキーで設定値を入力してください。設定が終わったら ENTキー又はロータリーノブを押します。これによりモードとそのモードの新しい設定値を同時 に設定する事が可能です。

<u>5.2 負荷設定の変更</u>

負荷の設定値を変更するには数値入力テンキーを又はロータリーノブを使用します。

(1) 数値入力テンキー

数値入力テンキーを押すことで、設定値をダイレクトに入力することができます。設定される 値は現在のモードでの値になります。この操作は LOAD ON/OFF の状態に関わらず行う事が できます。 テンキーにて数値入力し ENT キーにて確定してください。

例) 定電流モードで28.50A を設定(最初に定電流モードである事を御確認下さい)。

テンキーで²8⁵と入力します。画面の設定値の欄には下線付きで28.5 と表示されます。下線は変更中で有ることを示します。モードは変更していませんので"CC"と 表示されたままです。但しこの状態では負荷は実際には設定されていません。

図 5-2-1 定電流モード数値入力画面

次に ENT キーを押して確定し、実際に設定となります。

(2) ロータリーノブ

ロータリーノブを回すとその方向に応じて設定値が増減します。右に回転させると値が増加し、 左に回すと減少します。この操作はLOAD ON/OFF の状態に関わらず行う事ができます。

- 素早く回した場合内部の処理が追いつかないため、回した量に必ずしも設定値が一致しない場合 が有ります。
 - (3) <u>ロータリーノブの増減ステップ値</u> 1 ステップで増減する変化量は、変更する事ができます。ステップ幅は画面上ではアイコンで表現されます。表示されるアイコンと幅の関係は以下の通りです。

	00.0001
	00.0010
<u> </u>	00.0100
	00.1000
·····	01.0000
<u> </u>	10.0000

増減幅はモードには依存しません。

ステップ幅を変更するには CE キーを押します。1回押す毎にステップ幅が 0.0001~10.0 まで増加します。10.0の状態で更に押すと 0.0001 に戻ります。

5.3 応答時間の変更

モードにより負荷の ON/OFF 時または設定変更時の立ち上がり・立ち下がり時間の応答時間の変 更ができます。この速度は電流レンジに依存します。 応答時間は立ち上がり、立下りともに同じ値が設定されます。

変更が可能なモードは

・定電流モード

応答時間範囲は、下表となります。

モデル	High レンジ	Low レンジ
ELL-355	$0.5\mathrm{A}{\sim}50\mathrm{A}$ / μ s	$0.05\mathrm{A}{\sim}5\mathrm{A}/\mu~\mathrm{s}$
ELL-1005	$0.5\mathrm{A}{\sim}50\mathrm{A}$ / μ s	$0.05\mathrm{A}{\sim}5\mathrm{A}{\prime}\mu~\mathrm{s}$

表 5-3-1 モデルによる定電流モード応答速度範囲の違い

・外部制御モード

応答時間範囲は、下表となります。

モデル	High レンジ	Low レンジ
ELL-355	$0.5\mathrm{A}{\sim}50\mathrm{A}$ / μ s	$0.05\mathrm{A}{\sim}5\mathrm{A}/\mu~\mathrm{s}$
ELL-1005	$0.5\mathrm{A}{\sim}50\mathrm{A}$ / μ s	$0.05\mathrm{A}{\sim}5\mathrm{A}{\prime}\mu~\mathrm{s}$

表 5-3-2 モデルによる外部制御モード応答速度範囲の違い

・定電圧モード

応答時間範囲は、Fast (300 µ s)/ Slow(10ms) (ループゲイン設定)の2値の設定となります。

の3モードになります。

定電圧モードについて

定電圧モードの場合設定値はループゲインとなります。この値は電圧レンジ依存せず、Slow(応答遅)またはFast(応答速)の2値の設定となります。

接続される供試電源の応答速度と本器の応答速度の兼ね合いによる発振現象が見られた場合、設定を Slow に(負荷応答を遅く)してください。

変更方法

(1) 定電流・外部制御モードの場合。

定電流・外部制御モードか確認してください。LOAD CONTROL メニューに於いて F2 キーを 押します。応答速度の変更枠が表示されますのでテンキーにより希望の値を設定します。 ENT キーを押すと確定され変更枠が消え、値が反映されます。

図 5-3-1 定電流・外部制御モード応答速度変更手順

(2) 定電圧モードの場合

定電圧モードか確認してください。LOAD CONTROL メニューに於いて F2 キーを押します。 応答速度の変更枠が表示されますのでロータリーノブを回転させ設定します。 右に回転させると Fast 、左に回転させると Slow になります。 ENT キーを押すと確定され変更枠が消え、値が反映されます。

図 5-3-2 定電圧モード応答速度変更手順

5.4 電流リミット機能

電流リミット機能を使用するとモードに依らず負荷電流を制限する事ができます。 定電圧モードなどで負荷電流が必要以上に流れる事を防ぎ機器が破損する事を防ぐ事ができます。

(1) 変更方法

LOAD CONTROL メニューに於いて F1 キーを押します。更に F2 キーを押すとリミット値の 変更枠が表示されますのでテンキーにより希望の値を設定し ENT キーを押すと値が確定し再度 ENT キーを押すと変更枠が消え、値が反映されます。

図 5-4-1 電流リミット変更手順

電流リミットについての詳細は、"<u>7.1 過電流リミット</u>"をご参照ください。

5.5 定電流 (CC) モードでの使用方法

- (1) ロータリーノブを押してモード選択状態にして下さい。続けてノブを回し画面のモード欄に"CC"と表示されるようにします。
- (2) テンキーにて設定値を入力し ENT キーにて設定値を確定します。 設定値は前の値を覚えていますので変更する必要の無い場合はこの操作は必要ありません。 ただしモードの切り替えには、ENT キー又はロータリーノブを押す必要があります。
- (3) ON/OFF キーを押して ON すると、設定した電流値の負荷電流が流れます。

・すでにCCモードであれば、テンキーで設定値を入力し ENT キーにて設定値を確定できます。 ・設定された値は他の負荷モードへ移行した場合も保持されます。

・設定可能な値の上限を超えて入力確定された場合は、設定可能な最大値(電流値)となります。

5.6 定抵抗(CR)モードでの使用方法

- (1) ロータリーノブを押してモード選択状態にして下さい。続けてノブを回し画面のモード欄に"CR"と表示されるようにします。
- (2) テンキーにて設定値を入力し ENT キーにて設定値を確定します。 設定値は前の値を覚えていますので変更する必要の無い場合はこの操作は必要ありません。 ただしモードの切り替えには、ENT キー又はロータリーノブを押す必要があります。
- (3) ON/OFF キーを押して ON すると、設定した抵抗値と入力電圧に比例した負荷電流が流れます。

図 5-6-1 CR モードの操作手順

・接続についての詳細は→ "2.2 ケーブルの接続"を参照してください。

・すでにCRモードであれば、テンキーで設定値を入力し ENT キーにて設定値を確定できます。 ・設定された値は他の負荷モードへ移行した場合も保持されます。

・設定可能な値の下限を超えて入力確定された場合は、設定可能な最小値(抵抗値)となります。

5.7 定電圧(CV)モードでの使用方法

- (1) ロータリーノブを押してモード選択状態にして下さい。続けてノブを回し画面のモード欄に"CV"と表示されるようにします。
- (2) テンキーにて設定値を入力し ENT キーにて設定値を確定します。 設定値は前の値を覚えていますので変更する必要の無い場合はこの操作は必要ありません。 ただしモードの切り替えには、ENT キー又はロータリーノブを押す必要があります。
- (3) ON/OFF キーを押して ON すると、設定した電圧値になるように負荷電流が流れます。

設定値の変更はパスできます

図 5-7-1 CV モードの操作手順

・接続についての詳細は→ "2.2 ケーブルの接続"を参照してください。

5.7.1 CV+Climit ついて

電流リミットの設定については→ "5.4 電流リミット機能 "をご参照ください。

・すでにCVモードであれば、テンキーで設定値を入力し ENT キーにて設定値を確定できます。

・設定された値は他の負荷モードへ移行した場合も保持されます。

・設定可能な値の上限を超えて入力確定された場合は、設定可能な最大値(電圧値)となります。

5.8 定電力(CP)モードでの使用方法

負荷電力が一定になるように負荷電流が変化する負荷モードです。 スイッチング電源のように電圧が下がると電流が増加するような 装置を模擬するのに最適となります。

- (1) ロータリーノブを押してモード選択状態にして下さい。続けてノブを回し画面のモード欄に"CP"と表示されるようにします。
- (2) テンキーにて設定値を入力し ENT キーにて設定値を確定します。 設定値は前の値を覚えていますので変更する必要の無い場合はこの操作は必要ありません。 ただしモードの切り替えには、ENT キー又はロータリーノブを押す必要があります。
- (3) ON/OFF キーを押して ON すると、設定した電力値と入力電圧に反比例した負荷電流が流れ ます。

図 5-8-1 CP モードの操作手順

 リモートセンス端子を使用する場合には、リモートセンス選択スイッチを必ず "EXT"に設定してください。リモートセンス端子を使用しない場合は、リモート センス選択スイッチを必ず"INT"に設定してください。異なった設定となってい る場合、正常に測定、設定及び電力制限が効かなくなります。

・接続についての詳細は→ "2.2 ケーブルの接続"を参照してください。

・すでにCPモードであれば、テンキーで設定値を入力しENTキーにて設定値を確定できます。 ・設定された値は他の負荷モードへ移行した場合も保持されます。

・設定可能な値の上限を超えて入力確定された場合は、設定可能な最大値(電力値)となります。

5.9 指定電圧による負荷モード切り替えの使用方法

指定電圧により負荷モードを切り替えることが出来ます。

動作モード	説明
OFF:	本機能オフ状態。
CR(H):	指定電圧に対し測定電圧が上回った時に、定抵抗モードに変更
CV(H):	指定電圧に対し測定電圧が上回った時に、低電圧モードに変更
CP(H):	指定電圧に対し測定電圧が上回った時に、停電力モードに変更
LOADOFF(H):	指定電圧に対し測定電圧が上回った時に、負荷オフ
CR(L):	指定電圧に対し測定電圧が下回った時に、定抵抗モードに変更
CV(L):	指定電圧に対し測定電圧が下回った時に、低電圧モードに変更
CP(L):	指定電圧に対し測定電圧が下回った時に、停電力モードに変更
LOADOFF(L):	指定電圧に対し測定電圧が下回った時に、負荷オフ

表 5-9-1 切り替えられるモードの種類・説明

(1) モード指定

LOAD CONTROL メニューに於いて F1 キーを3回押します。ENT キーを押すと確定され、メニューが切り替わります。

図 5-9-1 モード指定の操作手順

F2キーを押すたびにモードが切り替わりますので、希望のモードを選択して ENT で確定します。

(2) 切り替え電圧の指定

F3キーを押すと、電圧入力の画面に切り替わるので、テンキーより設定値を入力し、 ENTキーで確定して下さい。

(3) モード指定を OFF 以外にすると初期画面のモード表示が反転表示となり、モード切り替えが 有効であることを示します。

図 5-9-4 モード指定表示

🗾 補 足 🔜

- ・CC モードから他のモードへの切り替えは可能ですが、CC モード以外から CC モードへの切り替え は、レンジの不整合が発生するために出来ません。
- ・切り替わり時間は最大 240 ms となります。
- ・EXT モード、SHORT モードでは使用できません

5.10 外部制御(EXT)モードでの使用方法

- (1) ロータリーノブを押してモード選択状態にして下さい。続けてノブを回し画面のモード欄に"EX"と表示されるようにします。
- (2) テンキーにて設定値を入力し ENT キーにて設定値を確定します。 設定値は前の値を覚えていますので変更する必要の無い場合はこの操作は必要ありません。 ただしモードの切り替えには、ENT キー又はロータリーノブを押す必要があります。
- (4) ON/OFF キーを押して ON すると、設定した電力値と入力電圧に反比例した負荷電流が流れ ます。

・すでに EXT モードであればテンキーで設定値を入力し ENT キーにて設定値を確定できます。 ・設定された値は他の負荷モードへ移行した場合も保持されます。

・設定可能な値の上限を超えて入力確定された場合は、設定可能な最大値(電流値)となります。

<u>5.11 短絡 (SHORT) モードでの使用方法</u>

負荷端子を短絡するモードです。

負荷端子間が短絡状態になり最大定格電流、又は設定された電流リミットまでの電流が流せます。 電流レンジは High レンジに固定され変更する事はできません。

- (1) ロータリーノブを押してモード選択状態にして下さい。続けてノブを回し画面のモード欄に"ST"と表示されるようにします。
- (2) ENT キー又はロータリーノブを押し、短絡(SHORT) モードに切り替えます。
- (3) ON/OFF キーを押して ON すると、最大定格電流、又は設定された電流リミットの負荷電流 が流れます。

図 5-11-1 SHORT モードの操作手順

モデル	最大定格(High レンジ)
ELL-355	135A
ELL-1005	405A

表 5-11-1 モデルによる最大定格電流の違い

5.12 動的負荷(DYNAMIC)モードでの使用方法

- (1) 複数の負荷設定
 - 複数の負荷設定を行い、動的負荷試験を行うことが出来ます。 例 CC1 と CC2 を使用して

図 5-12-1 DYNAMIC 負荷時の波形特性図

- ・負荷設定値 設定範囲は通常の設定と同様現在のモードと電流レンジに依存します。
- ・有効時間 $1 \mu s \sim 60s \pm \overline{c} 1 \mu s$ 刻みで指定します。
- ・応答時間 設定範囲は通常の設定と同様現在のモードと電流レンジに依存します。

のパラメータを持ちその設定はお互いに独立しています。

- 有効時間の分解能は有効時間が長くなると粗くなります。設定上の分解能は有効時間に 関わらず一定ですが、実動作では精度が悪くなります。
- DYNAMIC動作時は、前面パネルのTRIGOUT端子からトリガ信号が出力されます。
 詳しくは→ "2.5 TRIGOUTの接続"を参照してください。

(2) 負荷モード

負荷モードは通常状態での負荷モードを引き継ぎます、例えば定電流モードにある状態で動的負 荷変動を設定すると定電流モードで動作します。 動的負荷モード実行中に負荷モードを変更すると動的負荷モード動作は終了し通常動作となり ます。

(3) 動的負荷変動モードの呼び出し

LOAD CONTROL メニューに於いて F3 キーを押します。 負荷モードは通常状態での負荷モードを引き継ぎます、例えば定電流負荷モードにある状態で 動的負荷モードに入った場合には、各パラメータは定電流モードのデータになります。

図 5-12-2 動的負荷モードの呼び出し手順

(4) CC の切り替えと設定

動的負荷モード画面では最初に CC1 の設定画面が表示されます.

(1)に現在の CC_No が表示され、パラメータを編集中である事を示しています。 CC_No を切り替えるには(2)のメニューに従いファンクションキーの F1 キーを押すと (3)の CC_No 入力画面となります。

ここで F1 キーかダイヤルか数値キーで数値を入力し最後に ENT キーで決定します

(5) パラメータの設定

下図は各パラメータと動作状態との関係を表した図になります。 * CC1 と CC2 のみ設定しその他はスキップした場合

[連続動作]RUN-LOOP

[単発動作]RUN-SINGLE

図 5-12-4 各パラメータと動作状態

設定画面では以下の様になります

図 5-12-5 設定画面の詳細

ロータリエンコーダを回すと、各設定項目を選択する下線が移動します。

各パラメータの設定はテンキーにより直接入力できますし、

変更したい設定項目上で"ENT"を押すと、選択した設定項目が白黒反転し、ロータリエンコーダ での値入力も可能となります。

再度"ENT"を押す事により、ロータリエンコーダでの値入力を解除出来ます。

ロータリエンコーダを使用した値入力の変化量は、トップの負荷設定時に使用する変化量を使用 しています。

変化量を変更したい場合は"ENT"を押した状態で"ロータリエンコーダ"を押す事により可能です。

CC_Noは1から16まで設定できます。 有効時間(2)を0と設定するとそのCC_Noはスキップします。

動的負荷モード実行中にパラメータを変更すると直ちに設定が反映されます

Load Edge Series

(6) 実行

CC1、CC2の設定が完了したら動作を開始します。 動作を開始するには動的負荷モード設定画面で F3を押し動作 OFF/LOOP/SINGLE の何れ かを選択します。 続けて ENT キー又はロータリーノブを押して決定します。

(6-1) OFF モードの場合

動作中は設定画面に"RUNNING"と言う文字が表示されます。 また通常画面では設定値の欄に"DYNAMIC"と表示されます。

(7) 設定例

例1 連続動作

1mS幅で1Aを定電流で引き、2msの間無負荷状態にする設定の場合。

- 1) 通常画面で定電流モードに設定します。
- 2) 動的負荷設定画面で CC1 を設定します。
- 3) 動的負荷設定画面で CC2 を設定します。
- 4) 負荷出力を ON します。
- 5) F3 キーで動的負荷動作モードを LOOP にして ENT キーを ON します。
 - ->各 CC に設定されている条件を CC1 から CC16 まで順次実行し LOOP します
 *TIME が 0 の CC はスキップします

図 5-12-7 連続動作の操作手順

例2 単発動作

10mS幅で10Aを定電流で1回だけ引きます。

- 1) 通常画面で定電流モードに設定します。
- 2) 動的負荷設定画面で CC1 を設定します。
- 3) 動的負荷設定画面で CC2 を設定します。
- 4) 負荷出力を ON します。
- 5) F3 キーで動的負荷動作モードを SINGLE にして ENT キーを ON します。
 - ->各 CC に設定されている条件を CC1 から CC16 まで順次実行し停止します
 *TIME が 0 の CC はスキップします

図 5-12-8 単発動作の設定手順

図 5-12-9 単発動作の詳細

(8) 単発動作の再起動

単発動作は1回だけ動作して終了しますが、これを動的負荷モードのON/OFFを操作する事無くENTキーを押す事で簡単に再起動させる事ができます。

・ この機能は動的負荷モード機能が動作している時にのみ有効になります。最初に通常の手順で 動的負荷動作モードを SINGLE にしてから操作を行ってください。 (9) 動的負荷モードの設定値の保存、読み込み、クリア[MEM] MEM への切り替えと設定

動的負荷モードにて、ファンクションキー[F2]を押します。

DYNAMIC SETUP CC CC1 <u>SET [0.0000]A</u> (MEM TIME[0.000]mS SR [100.0000]A/U(RUN

[0]~[2] 迄のキー入力及びロータリエンコーダの [UP][DOWN] で MEM モードが選択 できます。

[F2] を押すと [UP] と同等の機能になります。

F2キーを押すか ロータリエンコータを回す

又は数値キーを押す

7 8 9 4 5 6 1 2 8 0 . CE

(9-1) 設定値の読み込み

下図のように MEM モードにて[RELOAD]を選択します。 保存(起動時の初期値用データ)より、データを読み込みます。 読み込みデータに合わせてハードウェアの状態も更新されます。 保存データは CC/CR/CV/CP の 4つの負荷モードに対して、動的負荷モードの設定値を それぞれ持っています。

DYNAMIC SETUP CC	
SET [@(MEM RELOAD) .	FNT
TIME[0.000]ms +	
<u>SR [100.0000]A/u(RUN</u>	

(9-2) 設定値の保存

下図のように MEM モードにて[STORE]を選択します。 保存データへ現在の負荷モードの動的負荷モードの設定値を保存します。 他の負荷モードの保存データは変更されません。 この動作を行う事により、現在の動的負荷モードの設定値が起動時の初期値として読み込 める用になります。

(9-3) 設定値のクリア

下図のようにMEM モードにて[CLEAR]を選択します。 動的負荷モードの設定値をデフォルトの値にクリアします。 SET=0.0/TIME=0.0/SR=MAX を全てのステップへ設定します。 読み込みデータに合わせてハードウェアの状態も更新されます。 保存データは変更されません。

DYNAMIC SETUP CC		
	+	ЕМТ
	т	ENI
SR [100.0000]A/uRUN		

5.13 動的負荷(シーケンス)モードでの使用方法

(3) シーケンスモードの主な仕様

インターバル時間	1msec~10min ※1データ毎に周期を変化させる事はできません
負荷設定ステップ数	1~1024 ステップ
繰り返し実行回数	有限回:1回~65535回 又は 常時継続(無限回)
利用可能負荷モード	CC,CR,CV,CP
利用方法	GPIB/USB からのリモート設定による
動作解除	GPIB/USB からのリモート操作及び表パネルの CE キー押下により
	解除可能

図 5-13-1 シーケンス負荷時の波形特性図(CC モードの場合)

(4) シーケンス制御ソフト.xlsを使った設定方法について

シーケンスモードは GPIB または、USB による動作のみサポートしております。 付属される Excel マクロソフトでは、USB を使ったリモートコントロールが可能です。 使用する際は、パソコンヘデバイスドライバーのインストールが必要になります。 インストールについては、"<u>8.8 USB インターフェイス</u>"をご参照ください。

図 5-13-2 シーケンス制御ソフト.xls

- ①繰返回数 :開始 INDEX からデータ数までの区間、ステップで設定された値を繰返す回数 を設定します。0の場合は無限ループになります。
- ②開始 INDEX : シーケンスを開始させるスタート箇所を、ステップ番号で指定します。
 範囲: 1~1023 (開始 INDEX < データ数)
- ③データ数 : シーケンスを終了させるストップ箇所を、ステップ番号で指定します。
 範囲: 2~1024 (開始 INDEX < データ数)
- ④インターバル : ステップで設定された値を保持する時間(幅)を設定します。
 時間 範囲 1msec~10min
- ⑤ステップ番号 : ステップ毎、スロープと負荷の設定が出来ます。範囲 1~1024 ステップ。
- スロープ設定 : ステップ内で設定するスロープ(スルーレート)を設定します。単位 A/μ sec

負荷設定 : ステップ内で設定する負荷電流値を設定します。単位 A
 CCモード以外では、スルーレートの値は無視され最大設定となります。
 負荷設定では、現在設定中の負荷モードに依存される設定値となります。
 (例 CR の場合は抵抗、CV の場合は電圧、CP の場合は電力となります。)

⑥download : 設定したデータを電子負荷へ転送します。転送終了後、電子負荷は以下の表示 【SEQLOAD】となります。

図 5-13-3 シーケンス動作時の電子負荷パネル表示

⑦start :シーケンス動作をスタートさせます。

⑧stop : シーケンス動作を終了させます。

付属ソフト シーケンス制御.xls は、Excel 標準の VBA で作成しております。 設定コマンドは **付録1.)** にて公開しております。

また、標準にて三角波、sin 波、円弧の三つのシーケンスプログラムが Excel のシート毎に用意しております。アレンジなどしてお使いください。

心三角波(SIN波(円弧)

図 5-13-4 各シーケンスプログラムの Excel のシートについて

- (5) シーケンスモードでの注意
 - (ア) 設定について

シーケンスモード動作は、現在設定中の負荷モード及び、電流レンジに依存します。 設定中の電流レンジでの最大負荷電流を越えるような負荷設定を行っても、シーケンス モードからでは電流レンジを変えることはできません。レンジの最大電流が設定されます。 またシーケンス負荷の設定値は現在の負荷モードでの設定値として解釈されます。

例えば、電流値のつもりでデータを設定しても現在の負荷モードが CR モードであれば これを抵抗値として解釈し設定を行います。

- (イ) ダウンロードしたシーケンスモードデータは保存できません。(必要なときに、データをダウンロードしてください。)
- (ウ) ダイナミックモードとの併用はできません。
- (エ)シーケンスモード動作時において、表パネルによるマニュアル操作はできません。
- (オ)シーケンスモード動作時において、電流レンジの自動レンジは動作しません。 (固定レンジを使用してください。)

その他)

- ・表パネルキー操作による実行停止 実行中に CE キーを押すと、シーケンスモードはその動作を停止します
- ・シーケンス実行中の測定 測定は通常のリモート操作時と同じ扱いになります。 表パネルの表示も、リモートコマンドによりフリーラン状態に設定すれば、リアルタイムに 値が更新することができます。

付録1.) 設定コマンド

1)初期化コマンド SQI 引数なし

機能:全てのデータを0クリアします

2) 負荷設定データ設定 SQD [データインデックス番号(1~1024)],[負荷応答レート],[負荷設定値]

機能::各負荷データを設定します

3) 実行条件設定 SQU [繰返回数 1~65535/0 で無限回],[出力開始データインデックス番号(1~1024)],[出力 データ数(1~1024)]

機能:シーケンスモードの実行条件を設定します

4) 実行開始/停止 SQC [開始(1)/停止(0)]

機能:シーケンスモードの開始/停止の制御。

第6章 測定モードの操作方法

本器の測定系には、電圧、電流及び電力の3種類の測定モードがあります。 電圧測定には2つのレンジ、電流測定には3つのレンジがあり、精度良く測定することが可能です。 またノイズ及びリップルの測定の可能な RC-02A 測定モジュール(工場出荷オプション)が有ります。

6.1 測定値の表示の変更方法

本器では任意の2項目を選んで画面に表示させる事ができます。以下にその変更方法について説明します。

"<u>4.2 メニュー選択機能</u>"で説明しましたメニューの呼び出し方法により、MEASURE SETUP メニューを呼び出します。

(1) 上段表示の変更

上段の表示内容を変更するには F1 キーを押します。表示される項目の選択枠が表示されます。 F1 キー又はロータリーノブを回し希望する項目を選択した状態で ENT キー又はロータリー ノブを押します。

図 6-1-1 上段表示の変更方法

(2) 下段表示の変更

下段の表示内容を変更するには F2 キーを押します。表示される項目の選択枠が表示されます。 F2 キー又はロータリーノブを回し希望する項目を選択した状態で ENT キー又はロータリー ノブを押します。

図 6-1-2 下段表示の変更方法

選択枠に表示される名称は以下のような意味になります。

*CURR と POWER は -BS 付を選択すると並列運転時の総和が表示されます

- ・VOLT-T 端子台電圧
- ・CURR 負荷電流
- ・CURR-BS 負荷電流 並列運転時の総和
- ・POWER 電力(負荷電流 × 端子台電圧)
- ・POWER-BS 電力(負荷電流 × 端子台電圧)並列運転時の総和
- ・VOLT-I RC-02A モジュールによる電圧測定値

68 6. 測定モードの操作方法

NOISERIPPLE

RC-02A モジュールによるノイズ測定値 RC-02A モジュールによるリップル測定値

※ RC-02A モジュールは工場出荷オプションです

6.2 サンプリングレートの設定

ハムキャンセルのため、測定用の A/D コンバータのサンプル周波数を変更できます。 通常、使用している商用周波数にあわせます。

・周波数の変更

サンプリング周波数を変更するにはMEASURE SETUPメニューが表示されている状態でF3キ ーを押します。50H、60Hzのサンプリング周波数の選択枠が表示されます。

F3 キー又はロータリーノブを回し希望する項目を選択した状態で ENT キー又はロータリーノブ を押します。

図 6-2-1 サンプリングレートの変更方法

6.3 電圧、電流レンジの設定

レンジの切り替えは測定だけでなく負荷の設定にも影響が及びます。仕様をご理解の上御利用下 さい。

レンジの変更は基本メニューに依存しません。どの基本メニューが表示されている画面からでも 変更ができます。但し I/O メニューが表示されている場合は I/O 設定中となっていますので変更 はできません。基本メニューが表示された通常の状態に於いて操作可能になります。

(1) 電圧レンジの設定

電圧レンジを変更するにはロータリーノブを2回続けて押します。この時必ず続けて押すようにしてください。

図 6-3-1 電圧レンジの変更方法-1

上図の円で囲まれた場所の表示が1回押すと"MODE"になり、2回押すと"V-r"に変わります。 この状態でロータリーノブを回すと電圧レンジの表示が "4" (Low レンジ)、"30" (High レ ンジ)と変化します (ELL-355の場合)。

希望のレンジが表示されている状態で ENT キー又はロータリーノブを回すとレンジが設定 されます。

図 6-3-2 電圧レンジの変更方法-2

電圧レンジは、以下の表を参考にしてください。

モデル	High レンジ	Low レンジ
ELL-355	30V	$4\mathrm{V}$
ELL-1005	30V	4V

表 6-3-1 モデルによる電圧レンジの違い

電圧レンジは Low レンジ及び High レンジの何れかの固定レンジの選択のみになります。

(2) 電流レンジの設定

電流レンジを変更するにはロータリーノブを3回続けて押します。この時必ず続けて押すよ うにしてください。

自動

上図の円で囲まれた場所の表示が1回押すと"MODE"になり、3回押すと"C-r"に変わります。 この状態でロータリーノブを回すと電流レンジの表示が"45"、"405"、"AT"と変化します。電流 レンジは自動レンジをサポートしてます。

"45"	45A固定レンジ
"405"	405A 固定レンジ
"АТ"	自動レンジ

となります。

希望のレンジが表示されている状態で ENT キー又はロータリーノブを回すとレンジが設定されます。

45A固定		405A固定	
	図 6-3-4	電流レンジの変更方法-2	

電流レンジは、以下の表を参考にしてください。

モデル	High レンジ	Low レンジ
ELL-355	135A	15A
ELL-1005	405A	45A

表 6-3-2 モデルによる電流レンジの違い

本器の保護機能及び、アラームについて説明します。 本器ではアラーム発生時には、LOAD OFF の無負荷設定へ強制的に変更されます。またビープ音 と表示器へエラーメッセージを表示します。

7.1 過電流リミット

電流リミット制限を行い、負荷部を保護します。リミット制限時には設定値の 110%(Typ) の電流値でリミット制限されます。デフォルトの設定は、"135A"です。(ELL-355の場合)

モデル	電流リミットデフォルト
ELL-355	135A
ELL-1005	405A

表 7-1-1 モデルによる電流リミットデフォルト値の違い

設定方法については、→ "<u>5.4 電流リミット機能</u>"をご参照ください。

図 7-1-1 過電流リミット時の表示器

7.2 過電圧アラーム

選択されている電圧レンジの許容値を超えると動作します。設定レンジの 104%(Typ)の値 が入力されたときに動作します。

モデル	High レンジ	Low レンジ
ELL-355	31.2V(Typ)	4.16V(Typ)
ELL-1005	31.2V(Typ)	4.16V(Typ)

表 7-2-1 モデルによる過電圧アラームしきい値の違い

図 7-2-1 過電圧アラーム時の表示器

7.3 温度アラーム

負荷部のヒートシンクの温度検出部で 90℃(Typ)以上の場合に動作します。

図 7-3-1 温度アラーム時の表示器

7.4 逆接続アラーム

負荷電流の検出が許容値を超えると動作します。

モデル	検出電流
ELL-355	-1.5A(Typ)
ELL-1005	-1.5A(Typ)

表 7-4-1 モデルによる逆接続アラームしきい値の違い

図 7-4-1 逆接続アラーム時の表示器

・ アラームの検出には、逆接続電圧が-0.6V(Typ)以上必要です。

7.5 アラームの解除

各アラームはCEキーを押すことで、解除することができます。 解除する際には、アラーム要因を取り除いてから行ってください。

図 7-5-1 CE キーの位置

7.6 瞬間電力制限状態

350W(Typ) <Pin の場合及び、ピーク電力制限の条件により動作します。 ピーク電力制限については、→ "<u>10.6 動作領域</u>"をご参照ください。

図 7-6-1 瞬間電力制限状態時の表示器

 リモートセンス端子を使用する場合には、リモートセンス選択スイッチを必ず "EXT"に設定してください。リモートセンス端子を使用しない場合は、リモート センス選択スイッチを必ず"INT"に設定してください。異なった設定となってい る場合、正常に測定、設定及び電力制限が効かなくなります。

・接続についての詳細は→ "<u>2.2 ケーブルの接続</u>"を参照してください。

7.7 電力制限状態の解除

電力制限の解除は自動的に行われ手動で解除する事はできません。

第8章 リモートコントロール

本器にはインターフェイスに GP-IB(IEEE488.1 準拠)及び USB(USB1.1 に準拠)を標準で装備しています。パネル面で設定可能なパラメータの設定や、電流、電圧測定値のリードバックができ、自動計測システムが容易に実現可能です。

8.1 GP-IB インターフェイス

- アドレス 1~30までのアドレスが使用できます。
- (2) デリミタ 本器で設定できるデリミタは、"CR、LF、CR+LF、無し"です。どのデリミタを設定して も "EOI"(End of Strings)が必ず送出されます。設定方法などは→ "<u>4.4 I/O 設定</u>"を参 照してください。
- (3) マルチステートメントでの区切り記号について 複数のコマンドをまとめて送る場合のセパレータは通常、標準としてスペースを用います。 またカンマ、コロン、セミコロン、タブもセパレータとして認識されます。 区切り記号なしの場合は正常に動作しません。
- (4) ローカル操作への切り替え 本器のリモートコントロール時に CE キーを押すことで、パネル操作(ローカル操作) へ切り替えることができます。

8.2 測定コマンド

機能	コマンド	動作及び設定範囲	備考
負荷電流測定	MC{NR1}	範囲 0~2	(※1)
		0:AUTOレンジ	戻り値:実数値(##.###)
		1:電流Highレンジ	
		2:電流Lowレンジ	
負荷端子電圧測定	MV{NR1}	範囲 1~2	戻り値:実数値(##.###)
		1:電圧Highレンジ	
		2:電圧Lowレンジ	
電力測定	MW	負荷端子電圧×負荷電流	電力を演算結果で返します。
			戻り値:実数値(##.###)
ブースタ接続時の	BMC{NR1}	範囲 0~2	(※1)
簡易負荷電流測定		0:AUTOレンジ	戻り値:実数値(##.###)
		1:電流Highレンジ	
		2:電流Lowレンジ	
ブースタ接続時の	BMW	負荷端子電圧×簡易負荷電流	電力を演算結果で返します。
簡易電力測定			戻り値:実数値(##.###)
表示器の変更	DS{NR1}	範囲 0~1	(※2)
		0:上段表示部分へ更新	測定時の表示器の更新
		1:下段表示部分へ更新	(上段、下段)を指定します。
測定固定モード	MF{NR1}	範囲 0~1	最後に指定した測定コマンド
		0:フリーラン測定	の繰り返し指定を行います。
		1:シングル測定	
測定周波数設定	HZ{NR1}	範囲 0~1	測定に使用する A/Dの
		0:50Hz	サンプルレートを設定します。
		1:60Hz	

補足)

- {} 内の内容は省略できません。 NR1……整数値
 - ※1 負荷部の設定レンジと測定系の設定レンジは、独立して変更することはできませんので、 同レンジに選択されます。

※2 電源投入時の際は、デフォルトで下段表示となります。

※3 オプションのリップルノイズ測定モジュール (RC-02A) のコマンドにつきましては、別冊 の RC-02A の取扱説明書を参照下さい。

8.3 負荷設定コマンド

機能	コマンド	内容	備考	
負荷設定	CC{NR2}	定電流[A]	負荷設定コマンドではモードと 設定値を同時に指定します。	
	CR{NR2}	定抵抗〔Ω〕		
	$CV{NR2}$	定電圧[V]		
	CP{NR2}	定電力〔W〕		
	CX{NR2}	外部制御電圧10V時の電流値[A]		
	CS	ショート		
		電流レンジはHighレンジとなります		
	$CD\{NR1\}$	範囲 0~2	CDコマンドはダイナミック設定を有効	
		0:ダイナミック動作の停止	にするモード指定で動作条件はダイ	
		1:ダイナミックのループ動作開始	ナミック設定コマンドにて行います。	
		2:ダイナミックにシングル動作開始	1->2,2->1 への設定は行えません。	
ダイナミック設定	DP{NR1}	範囲 1~16	DC,DTコマンドで設定する	
		1:CC-1の設定区間を指定	区間を指定します。	
		2:CC-2の設定区間を指定		
		n:CC-nの設定区間を指定		
	DC{NR2}	区間での電流値(A)	DPコマンドで指定した区間の値を	
	DT{NR2}	区間の時間幅(msec)	設定します。	
	DR{NR2}	応答の設定(A/ µ sec)		
電流設定レンジ	RC{NR1}	範囲 0~2	※1)負荷電流レンジ	
		0:自動レンジ		
		1:Highレンジ		
		2:Lowレンジ		
電圧設定レンジ	RV{NR1}	範囲 1~2	※1)負荷電圧レンジ	
		1:Highレンジ	CR,CVの設定内容に影響します。	
		2:Lowレンジ		
出力制御	SW{NR1}	範囲 0~1	出力オフは無負荷設定となり	
		0:負荷OFF	負荷設定を無効にします。	
		1:負荷ON		
負荷応答設定	GC{NR2}	定電流、外部制御設定での	定電流、外部制御、定電圧設定のみ	
		応答時間 [A / µ s]	有効でその他は最大のデフォルト値。	
	GV{NR2}	定電圧設定での応答時間 [%]		
		範囲 0.1~50未満/50~100 の2値		
		0.1~50未満 : Slow設定		
		<u>50~100</u> : Fast設定		
電流リミット設定	LS{NR2}	最大定格電流まで指定可能 [A]	負荷電流設定レンジの制限無し。	
ブースタ機能設定	BS{NR1}	範囲 0~2	現在の状態がNormal以外の時は	
		0:Normal	Master/Multi設定は受け付けません。	
		1:Master		
		2:Multi		

補足)

{ }内の内容は 省略できません。 NR1 ••••• 整数值

NR2 · · · · · 実数値(##.###)

※1)負荷部の設定レンジと測定系の設定レンジは、独立して変更することはできませんので、 同じレンジに選択されます。

※2)CD2 のダイナミックのシングル動作時は、LOAD OFF -> ON で単発動作が行われます。

8.4 システムコマンド

機能	コマンド	内 容	備考
バージョンを返す	V	ROMのバージョンを返します	
アラーム解除	AC	アラーム解除	
初期化状態	INI	初期化	リモート状態は保持されます。
クリアー	CL	クリアー	電源投入時の状態となります。
レスポンスデータ	Т0	カンマ、スペース	
	T1	カンマ	レスポンスデータの区切り記号
	T2	スペース	
SRQ設定	S0	無し	
	S1	コマンドエラー	SPOの惑仕冬仲な設定します
	S2	アラーム発生	SKQの先生未住を成定しより。
	S3	コマンドエラー & アラーム発生	

8.5 マルチラインメッセージ

マルチラインメッセージは ATT 信号が "Low"のとき有効です。本器では下表の機能をサポート しています。

機能	コード	内 容	備考
デバイスクリアー	20	DCL (Device Clear)	電源投入時と同じ状態に設定する
	4	SDC (Selected Device Clear)	
トリガー	8	GET (Group Execute Trigger)	最後のコマンドを繰り返す
パネル操作	1	GTL (Go To Local)	リモート状態を解除する
	17	LLO (Local Lock Out)	リモート解除を禁止する

補足)

マルチラインコマンドのコードはバイナリデータとして送信します。 従って、通常使用する送出コマンドではアクセスできません。

8.6 ステータスレジスタ

ステータスレジスタは本器の状態(アラーム及びエラー)を、シリアルポールによって読み出す ことができます。各ビットデータの内容は下表に内容になります。

ビット(HEX)	略称	内容	備考
80	ALM	アラーム発生	ST0~ST2のビットが立つとセット
40	SRQ	サービス要求	割り込み要求を設定している場合
20	ERR	コマンドエラー	実行中のコマンドの状態を返す
10	BUSY	コマンド実行中	実行中のコマンドの状態を返す
08	LIMIT	電流リミットの状態	負荷制御に異常か発生している
04	ST2	アラームの状態を数値で示す	場合にセットされます
02	ST1	0:正常、1:過電圧、2:温度	
01	ST0	3:逆接続	

8.7 GPIB サンプルプログラム例

National Instruments 社製 GP-IB カード/ボードを使用した、Microsoft 社 Visual Basic でのサ ンプルプログラムです。GP-IB カード/ボードのドライバの詳細、及び Visual Basic 等について は、取扱説明書や専門書などを参考にしてください。

サンプルに有る Private Sub InitIF0部分は GPIB バスを初期化するための関数です。 各サンプル共通で使用します。

サンプル-1)・・・・・Command1_Click()部分 定電流設定を使用し測定結果を表示させる基本的プログラムです。 負荷設定レンジ等はデフォルトの自動設定を使用し、定電流設定で 50A から 5A 毎に下げた時 の端子間電圧と電流測定結果を表示します。

サンプル-2) ·····Command2_Click()部分

定電流のダイナミック動作を使用して、下図のように連続的に電流が変動するプログラムです。 下図内の番号が、サンプルプログラム中のコメント文の番号と相関関係となっています。

図 8-7-1 プログラムに対する負荷電流図

サンプル - 3)) ······Command3_Click()部分 シリアルポールによってステータス情報を読み出し、表示させるプログラムです。

```
Option Explicit
Dim IFid As Integer
                                                    ' NI I/F Device ID
Private Sub InitIF()
    If 0 <= ilfind("GPIB0") Then
       ' Init I/F
       IFid = ildev(0, 1, 0, T3s, 1, &HC0A)
       ilsic 0
                                                    ' Interface Clear
                                                    ' Remote Enable
       ilsre 0, 1
       ilwrt IFid, "INI", 3
       Sleep 3000
    Else
       MsgBox "GPIB I/F(GPIB0) can't find"
    End If
End Sub
Private Sub Command1_Click()
                                                    ·サンプル-1)の開始
    Call InitIF
                                                    'GPIB I/F の初期化
   ilwrt IFid, "SW1", 3
                                                    ' LOAD ON
   Dim i As Integer
    Dim curr As Double
    Dim cmd As String
    Dim rcv As String
    curr = 50#
                                                    50A を初期値に設定する
    For i = 0 To 10
                                                    ・ループ回数を11回とする
       cmd = "CC" & CStr(curr)
                                                    ・定電流設定コマンドを作成する
       ilwrt IFid, cmd, Len(cmd)
                                                    'HIGH レンジでの電圧測定
       ilwrt IFid, "MV1", 3
                                                    ・コマンドを送信する
       rcv = "
                            "
                                                    ・受信文字列領域を空白で埋める
       ilrd IFid, rcv, 16
                                                    '測定値の受信
       MsgBox rcv & "[V]", vbInformation, "Voltage"

    測定電圧の受信

       ilwrt IFid, "MC0", 3
                                                    ・電流測定コマンドを送信する
       rcv = "
                            ..
       ilrd IFid, rcv, 16
       MsgBox rcv & "[A]", vbInformation, "Current"
       curr = curr - 5#
                                                    ・次の設定値を5A減少する
   Next i
   MsgBox "End CC set & Measure loop Sample Program"
    ilwrt IFid, "SW0", 3
                                                    ' LOAD OFF
    ilwrt IFid, "CC0", 3
                                                    '設定値を 0A にする
End Sub
                                                    ・サンプル-1)の終了
```

Private Sub Command2_Click()	' サンプル-2)の開始
Call InitIF	' GPIB I/F の初期化
ilwrt IFid, "SW1", 3 ilwrt IFid, "CC2", 3	' LOAD ON ' 定電流 2A 設定 ' ①
ilwrt IFid, "DP1 DC5 DT10", 12 ilwrt IFid, "DP2 DC3 DT40", 12 ilwrt IFid, "DR5", 4	' CC-1=5A TIME-A=10msec ' CC-2=3A TIME-B=40msec ' RESPONS=5A/usec
MsgBox "Dynamic Load Start"	' ②
ilwrt IFid, "CD1", 3	
MsgBox "Dynamic Load Stop"	' 3
ilwrt IFid, "CD0", 3 ilwrt IFid, "DP2 DT0", 7	'TIME-B=0msec
MsgBox "Single shot Dynamic Load Start"	
ilwrt IFid, "CD1", 3	' ④
MsgBox "End Dynamic Sample Program"	
ilwrt IFid, "SW0", 3	' LOAD OFF ' ⑤
ilwrt IFid, "CC0", 3 End Sub	' 設定値を 0A にする ' サンプル-2) の終了
Private Sub Command3_Click()	'サンプル-3)の開始
Call InitIF	' GPIB I/F の初期化
Dim stb As Integer ilrsp IFid, stb	' ステータス情報の読み込み
MsgBox CStr(stb) End Sub	' サンプル-3) の終了

<u>8.8 USB インターフェイス</u>

USB インターフェースを搭載した PC(OS は Microsoft 社製 Windows2000/XP 対応)と USB ケ ーブルによる接続のみで、Visual Basic や Excel 等の VBA から本器をコントロールすることが できます。コマンド体系は GPIB インターフェイスと同様になっていますので、GPIB によるコ ントロールと遜色ありません。

動作環境

対応 OS Microsoft Windows2000 Professional 日本語版 Microsoft WindowsXP Home/Professional 日本語版

PC本体 上記 OS が動作する USB 付きの IBM PC/AT 互換機

(1) ソフトウェアのインストール

USBのデバイスドライバーや制御用のActive Xコンポーネント等をインストールします。 以前のバージョンが有る場合、必ずアンインストールを行ってから、インストールしてくだ さい。

- (a) SUPPORT CD for EL Series Electronic Load CD-ROM を CD-ROM ドライブに挿入 します。
- (b) 挿入後、マイコンピュータやエクスプローラ等から CD-ROM にある "Setup.exe" を ダブルクリックします。

(c) インストーラーが起動します。

Windows インストーラ	
1. Ter	
	the same of
	キャンセル

(d) 「次へ (N)」をクリックします。

(e) インストール先のファルダを選択します。

デフォルトのフォルダは C:¥Program Files¥KEISOKU GIKEN ELSeries になります。 フォルダが決定後、「次へ(N)」をクリックします。

🙀 KEISOKU GIKEN EL Series ELECTRONIC LOAD support software	_OX
インストール フォルダの選択	
インストーラは次のフォルダへ KEISOKU GIKEN EL Series ELECTRONIC software をインストールします。	C LOAD support
このフォルダにインストールするには[次へ]をクリックしてください。別のこ ルするには、アドレスを入力するか[参照]をクリックしてください。	フォルダにインストー
フォルダ(<u>F)</u> :	
C¥Program Files¥KEISOKU GIKEN ELSeries¥	参照(<u>R</u>)
	ディスク領域(<u>D</u>)
KEISOKU GIKEN EL Series ELECTRONIC LOAD support software を たはすべてのユーザー用にインストールします。	現在のユーザー用か、ま
○ すべてのユーザー(E)	
○ このユーザーのみ(M)	
キャンセル 〈 戻る(旦)	TX-W>

(f) インストールの確認 最終確認です。設定で問題がなければ、「次へ (N)」をクリックします。

🙀 KEISOKU GIKEN EL Series ELECTRO	NIC LOAD suppor	t software	- I X
インストールの確認			
KEISOKU GIKEN EL Series ELECTRON できました。	NIC LOAD support	software をインス	トールする準備が
[次へ]をクリックしてインストールを開始	してください。		
			\sim
	キャンセル	〈 戻る(8)	(XAN)

(g) インストールの終了 問題がなければ以下の画面になり終了です。

🙀 KEISOKU GIKEN EL Series ELECTR	ONIC LOAD support software	
インストールが完了しました	o	
KEISOKU GIKEN EL Series ELECTRO 終了するには、[閉じる]をクリックしてく	NIC LOAD support software	は正常に削除されました。
	キャンセル 〈 戻 ?	5(B) (R)30

※アンインストールについては、Windows の"アプリケーションの追加と削除"または SUPPORT CD for EL Series Electronic Load CD-ROM の"Setup.exe"による"セット アップウィザードによる削除"にて行ってください。

Load Edge Series

- (2) <u>デバイスドライバーのインストール</u> USB のデバイスドライバーをインストールします
 必ず SUPPORT CD for EL Series Electronic Load CD-ROM をインストールしてください。
 - (a) 本器との接続 PC と本器を USB ケーブルにて接続してください。
 - (b) "新しいハードウェアが見つかりました。"のメッセージが表示されます。

新しいハート	ドウェアが見つかりました	
	USB Device	

(c) 「次へ (N)」をクリックし、検索ウィザードを開始します。

新しいハードウェアの検出ウィザード	
	新しいハードウェアの検索ウィザードの開始 このウィザードでは、ハードウェア デバイス用のデバイス ドライバのイン ストールを行います。
	統行するには、D太へ]をクリックしてください。
	〈戻る(日) (法へ)() キャンセル

(d) ドライバーのインストール画面となります。 "デバイスに最適なドライバーを検索する"を選び、「次へ(N)」をクリックします。

新しい	ハードウェアの検出ウィザード
N	ードウェア デバイス ドライバのインストール デバイス ドライバは、ハードウェア デバイスがオペレーティング システムで正しく動作するように設定する ソフトウェア プログラムです。
	次のデバイスをインストールします:
	USB Device
	デバイスのドライバはハードウェア デバイスを実行するソフトウェア プログラムです。新しいデバイスにはドラ イバジル必要です。ドライバ ファイルの場所を指定してインストールを完了するには D太へJ をクリックしてくだ さい。
	検索方法を選択してください。 (アーデバイスに最適なドライバを検索する(推奨)(S)
	○ このデバイスの既知のドライバを表示して、その一覧から選択する(型)
	< 戻る(B) (次へ(b)>) キャンセル

(e) ドライバファイルの検索画面となります。"場所を指定"を選び、「次へ(N)」をクリックします。

新しいハードウェアの検出ウィザード	And the second
ドライバ ファイルの特定 ドライバ ファイルをどこで検索しますか?	E Contraction of the second se
次のハードウェア デバイスのドライバ ファイルの	検索
USB Device	
このコンピュータ上のドライバデータベースおよび	5指定の検索場所から適切なドライバを検索します。
検索を開始するには、Dたへ]をクリックしてくださ いる場合は、フロッピーディスクまたは CD を掴 検索場所のオブション: 「「フロッピーディスク ドライブ(①)	ミい。フロッピー ディスクまたは GD-ROM ドライブで検索して ド入してから D太へ] をクリックしてください。
□ 場所を指定(S) Microsoft Windows Update(M)	
	〈戻る(図) 次へ(1)〉 キャンセル

 (f) el.Inf ファイルのある場所を指定します。
 SUPPORT CD for EL Series Electronic Load CD-ROM よりインストールした ファルダに Inf ファイルはあります。
 デフォルトフォルダの場合には下記のリンク先となります。

C:¥Program Files¥KEISOKU GIKEN ELSeries¥Driver¥WIN2K_XP フォルダを指定し、「OK」をクリックします。

新しいハードウェアの物	度出ウィザード	
ドライバ ファイル ドライバ ファイ	レの特定 イルをどこで検索しますか?	
新しいソード	*ウェアの検出ウィザード ×	
=	製造元が配布するインストール ディスクを指定したドライブに挿入 して、IOKJ をクリックしてください。 キャンセル	Þ
	製造元のファイルのコピー元(<u>©</u>):	
	C¥Program Files¥KEISOKU GIKEN ELSeries¥Driver¥WI 🖌 (登版伯)	
	lozoli, milioniz, obosicita.	1
	< 戻る(B) 法へ(10) キャンセ	11

(g) 検索終了後、「次へ (N)」をクリックし、インストールを開始します。

新しいハードウェアの検出ウィザード
ドライバ ファイルの検索 ハードウェア デバイスのドライバ ファイル検索が終了しました。
次のデバイスのドライバが検索されました
USB Device
このデバイスのドライバが見つかりました。 このドライバをインストールするには、D欠へ] をクリックしてくださ い。
C¥program files¥keisoku giken elseries¥driver¥win2k_xp¥el.inf
〈戻る(日) (二次へ)(1) キャンセル

(h) インストールの終了 問題がなければ以下の画面になり終了です。

新しいハードウェアの検出ウィザード	
	新しいハードウェアの検索ウィザードの完了
	EL Series KEISOKU GIKEN ELECTRONIC LOAD
200	このデバイスに対するソフトウェアのインストールが終了しました。
	のウィザードを閉じるには「奈子]をクリック」、てくだちい。
	(戻る(日) (

8.9 ActiveX コントロール関数リファレンス

使用可能なコマンド

Cmdsend (*str As string*) As long CmdRcv (*string*) As long LoadSet (*mode As Integer,val As Double*) As long Measure (*mode As Integer,val*) long MeasureSample (*times As Integer*) As long LoadON, LoadOFF ResetAlm Version

• CmdSend(<i>str A</i>	<i>ls string</i>) As long CPIR フマンドと同じ内容が実行可能で	\$- 1 -			
例	CmdSend "CC10"	・)。 、定電流設定で 10A を設定			
• CmdRcv(string	g) As long				
砺	戻り値を受け取ります。 CmdRcv ret	'ret = 戸り値			
1					
• LoadSet(mode	As Integer,val As Double) As long				
	整数値に対応する、測定コマンドを実行	行することが可能です。			
	0:定電流モード、1:定抵抗モード、2:定	'電圧モード、			
	3:定電力モード、4:外部制御モード、5:	ショートモード、			
例	LoadSet 0,10	'定電流設定で 10A を設定			
• Measure(mode	As Integer, val) long				
	整数値に対応する、測定コマンドを実	行することが可能です。			
	0:電流測定 AUTO レンジ、1:電流測定]	High レンジ、2:電流測定 Low レンジ			
	3:電圧測定 AUTO レンジ(RippleConverter)、4:電圧測定 High レンジ(RippleConverter)、				
	5. 电圧例足 Low レンン(RippleConverter) 7. 雷力測定(RippleConverter) 8. 雷力測行	7、0.貝彻端丁电/工例足 宅			
	*RippleConverter は工場出荷オ	こ トプションです。			
例	Measure 0, ret	'ret = 電流測定結果の戻り値			
		8. リモートコントロール 91			

Load Edge Series

• MeasureSample(times As Integer) As long

測定の平均化の回数を指定することが可能です。 0:1回、1:3回、2:5回

• LoadON

負荷を ON 状態にします。

• LoadOFF

負荷を OFF 状態にします。

• ResetAlm

アラームを解除します。

Version

ROM のバージョン情報を獲得します。

選択

8.10 Excel からの ActiveX コントロール使用方法

Excel の Visual Basic を使用したプログラムの ActiveX の選択方法について説明します。

(1) Excel を起動して、"表示 -> ツールバー(T) -> コントロールツールボックス" を表示させます。コントロールツールボックス内の"コントロールの選択"を選択します。

(2) KEISOKU GIKEN EL Series Control を選択します

 コントロール ツールボッ M 留 Q 	
V (ab) 💷 🛈 📑	
🗧 🚍 🗒 A 🔜	8
	DiskManagement.Control DSDisplayPanel Class DSStatusBar Class EffectBvr Class FTI Device Digita Infrared Control FTI Device Digita Serial Control FTI Device Digita USB Control gotobar Class HHCtrl Object HtmlDlgHelper Class InstallEngineCtl Object KEISOKU GIKEN EL Series Control

(3) 選択しますと、ワークシート上をドラッグしますと下図のようなマークが現れます。 これで Load Station Series のコントロールの選択は完了です

8. リモートコントロール 93

8.11 USB サンプルプログラム

Excelの**Visual Basic**を使用したプログラム例について説明します。 **Visual Basic**については、 専門書などを参考にしてください。

サンプルプログラム

本器のファームウェアのバージョンを読み込み、ワークシート上に表示させます。

	ELL.xls - Sheet1 (]-/*)	
C	ommandButton1 💽 Click	•
	Private Sub CommandButton1_Click() El1.CmdSend "v" Dim ret El1.CmdRcv ret Sheet1.Cells(1, 1) = ret End Sub	•
		► //

図 8-11-1 Excel の Visual Basic デザインウインドウ

Private Sub CommandButton1_Click()

イベントです。El1.CmdSend "V"'バージョン読み込みの GPIB コマンド送出します。Dim retEl1.CmdRcv ret'本器からのデータの受け取り。Sheet1.Cells(1, 1) = ret'セル A1 内にバージョン情報を記述します。

'CommandButton1 をクリックすると発生する

End Sub

下図のように実行後 Excel のワークシートへ、本器のファームウェアのバージョンが記述されます。

	A	В	С	D	
1	ELS-304 V	/er1.0R2(Aj	or 12 2004)		
2					
3					
4					
5	CommandButton1				
6					
7					
8					
9					
10					
11					

図 8-11-2 サンプルプログラム実行後のワークシート(例: ELS-304 の場合)

第9章 並列運転

9.1 並列運転

本器は、複数の電子負荷装置を並列に接続して、電流容量や電力容量を増加させる並列運転が可能 です。並列運転は1台がマスタ器となり、マスタ器から並列運転での全てのコントロールができます。 マスタ器には並列接続されている台数分の総電流値および総電力値を表示させることもできます。

マスタ器として設定した本器1台に対し、スレーブ器として設定した他器を並列接続する方式です。 並列接続できるスレーブ器は、マスタ器と同一の耐圧シリーズ(ELL/ELA/ELB/ELC)の電子負荷となりま す。例えばELA-305とELA-1005を接続する事は可能ですが、ELA-305とELL-355を接続する事はでき ません。

スレーブ器は最大4台まで可能です。マスタ器を含め最大接続数は5台となります。

9.1.1 並列運転の接続方法

並列運転を行うには、各負荷装置間を接続するための信号線と試験する機器と接続するための負荷 電線を接続する必要があります。

信号線には付属品の BOOSTER 接続ケーブルを使用してください。

スレーブ器は最大4台まで接続できますが、図 9-1-1では2台を接続する場合の例を示します。

図 9-1-1 スレーブ器 2 台の並列接続

図 9-1-2 スレーブ器 2 台の並列接続

9.1.2 並列運転の接続手順

マスタ器とスレーブ器は付属品の BOOSTER 接続ケーブルで接続します。また試験する機器との接続 は、それぞれ負荷線を使用します。負荷電線の配線方法および電線径は"<u>2.2 ケーブルの接続</u>"を参 照してください。

1. 電源オフを確認します。

接続する全器の電源がオフになっていることを確認してください。

電源がオンになっている場合は、POWER スイッチを押して電源をオフにしてください。

2. 各器の負荷入力端子を接続します。

接続図を参考に、複数の同一機種の負荷入力端子を確実に並列接続してください。

3. 各器の BOOSTER コネクタを接続します。

各器の BOOSTER_IN コネクタ、BOOSTER_OUT コネクタを付属品の BOOSTER 接続ケーブルで 接続してください。

BOOSTER_IN コネクタ、BOOSTER_OUT コネクタの接続を間違えると本器を破損するおそ れがありますので注意して作業してください。

9.1.3 マスタ/スレーブの設定手順

1. 各器の電源をオンにします。

POWER スイッチを押して、各器の電源をオンにします。

2. メニュー選択にて LOAD CONTROL を選択します。

必要な操作を行うためには先ず適切なメニューモードを選択する事が必要です。 メニューを選択するにはメニューキーを押し、メニュー選択画面を呼び出します。

図 9-1-2 メニューの選択画面

初期画面では現在のメニューモードの名称に下線が引かれ選択状態に有ることを示しています。続けてメニューキーを押すかロータリーノブを回すと下線の位置が移動します。目的のメニュー名称に下線が引かれた状態でENTキー又はロータリーノブを押すとそのメニューが呼び出されます。

3. LOAD CONTROL からメンテナンス機能を選択します。

"<u>4.2 メニュー選択機能</u>"にある方法で LOAD CONTROL メニューを呼び出します。 この状態でファンクションキーの F1 キーを押すと更にメニュー選択画面が表示されます。 更に F1 キーを押すとメニューのページが表示されます

4. マスタ/スレーブを選択します。

メニューページ画面1でF3キーを押すことによりマスタ/スレーブのモードを選択出来

ます。

選択後 ENT キーで決定します。

- ・NORMAL 本器単体での基本的使用方法です
- ・MASTER Load Station Series を同一機種、複数台使用時マスタ器となり 他のスレーブ器をブースト制御します
- MULTI Load Station Series を複数機種、複数台使用時マスタ器となり 他のスレーブ器を同期制御します

5. スレーブ器として設定します。 スレーブ器

6. マスタ器として設定します。 マスタ器

7.メニューページ画面1から抜けます。 「MENU」キーあるいは「CE」キーを押します。

9.1.4 接続機器の確認

接続されているスレーブ器を確認します。

スレーブ器の確認

9.1.5 並列運転時のアラーム

並列運転中にアラームが発生すると、エラーメッセージが表示され、全器がロードオフになります。 スレーブ器でアラームが発生した場合は、マスタ器にエラーメッセージが表示されます。

アラームの解除はマスタ器およびスレーブ器でアラームを解除してください。

<u> </u>	
-!ALARM CE-release	-
BUUSTER ALARM	_
— ŠŘ10.0000 A [Λ	[

9.1.6 並列運転時のスルーレート

CC モードおよび EXT モードでは、スルーレートを変更することができます。

配線のインダクタンスが増大して電流変化により大きな電圧降下が生じたり、電流の位相遅れによ り本器の制御が不安定になり発振現象を起こす場合があります。このような場合にスルーレートを遅 くして安定な動作を確保することができます。

並列運転の場合のスルーレートは、マスタ器の設定状態になります。

9.1.7 並列運転の解除

マスタ器として使用したものを単独動作に戻す場合は、設定方法に従ってメニュー設定で「NORMAL」 に戻してください。

スレーブ器

並列運転から単独運転に戻すときは、各器の電源をオフにした後、BOOSTER 接続ケーブルを外してください。

9.2 マルチチャンネル同期運転

マルチチャンネル同期機能を使用する事により、マルチチャンネル電源の出力を同期して評価・試験 出来るようになります。

接続されている複数の電子負荷の ON/OFF 制御を同期して行う事により上記を実現します。

並列運転と異なり、耐圧シリーズ(ELA/ELB/ELC)が異なる場合でも同期運転は可能です。

ダイナミック動作時は、基準クロックをマスタ器からスレーブ器へ分配する事により同期して動作す る事が可能となります。

ダイナミック動作時のシングルモード動作は各機器の個別動作のみ可能となり、連動動作は出来ません。

スレーブ器のブースタ機能選択の変更は行えません。

[MULTI] 設定時は [MASTER] 選択肢が、[MASTER] 設定時は [MULTI] 選択肢が見えなくなります。 ダイナミック動作時に各機器の DYNAMIC ON/OFF を切り換えると位相がずれます。

位相(開始位置)を一致させたい場合は、マスタ機の LOAD OFF -> ON を行う事により各機器の位相が 一致します。

ALARM は各機器内でクローズされ、連動しません。 よって ALARM が発生した機器では LOAD は OFF しますが LOAD LED は ON のままです。

ダイナミック動作時のスレーブ機の時間設定はマスタ機の時間範囲に合わせた設定が必要です。

範囲外の値を設定した場合は、設定値と異なる時間になります。

- 時間範囲 -

- $0.001 \mathrm{ms} \leq \mathrm{Time1} \leq 20 \mathrm{ms}$
- $0.010 \text{ms} \leq \text{Time} 2 \leq 200 \text{ms}$
- 0.1ms \leq Time3 \leq 2S
- $1 \text{ms} \leq \text{Time4} \leq 20 \text{S}$
- $10 \text{ms} \leq \text{Time5} \leq 200 \text{S}$
- $100 \text{ms} \leq \text{Time6} \leq 2000 \text{S}$

図 9-2-1 同期運転の接続方法

図 9-2-2 同期運転の接続方法

9.2.2 マルチチャンネル同期運転の接続手順

マスタ器とスレーブ器は付属品の BOOSTER 接続ケーブルで接続します。また試験する機器との接続 は、それぞれ負荷線を使用します。負荷電線の配線方法および電線径は"<u>2.2 ケーブルの接続</u>"を参 照してください。

・ 負荷電線は、電流に対して十分に余裕のある線径で、不燃性または難燃性の丈夫な 被覆を有するものを使用してください。

1. オフを確認します

接続する全器の電源がオフになっていることを確認してください。

電源がオンになっている場合は、POWER スイッチを押して電源をオフにしてください。

2. 各器の負荷入力端子を接続します。

接続図を参考に、複数の同一機種の負荷入力端子を確実に供試電源の出力に接続してくだ さい。

3. 各器の BOOSTER コネクタを接続します。

各器の BOOSTER_IN コネクタ、BOOSTER_OUT コネクタを付属品の BOOSTER 接続ケーブルで接続してください。

BOOSTER_INコネクタ、BOOSTER_OUTコネクタの接続を間違えると本器を破損するおそれが ありますので注意して作業してください。

9.2.3 マルチチャンネル同期運転の設定手順

1. 各器の電源をオンにします。

POWER スイッチを押して、各器の電源をオンにします。

2. メニュー選択にて LOAD CONTROL を選択します 必要な操作を行うためには先ず適切なメニューモードを選択する事が必要です。 メニューを選択するにはメニューキーを押し、メニュー選択画面を呼び出します。

図 9-2-2 メニューの選択画面

初期画面では現在のメニューモードの名称に下線が引かれ選択状態に有ることを示しています。続けてメニューキーを押すかロータリーノブを回すと下線の位置が移動します。目的のメニュー名称に下線が引かれた状態でENTキー又はロータリーノブを押すとそのメニューが呼び出されます。

3. LOAD CONTROL からメンテナンス機能を選択します。

"<u>4.2 メニュー選択機能</u>"にある方法で LOAD CONTROL メニューを呼び出します。 この状態でファンクションキーの F1 キーを押すと更にメニュー選択画面が表示されます。 更に F1 キーを押すとメニューのページが表示されます

4. マスタ/スレーブを選択します

メニューページ画面1でF3キーを押すことによりマスタ/スレーブのモードを選択出来

ます。

選択後 ENT キーで決定します。

- ・NORMAL 本器単体での基本的使用方法です
- ・MASTER Load Station Series を同一機種、複数台使用時マスター機となり 他のスレーブ機をブースト制御します
- Load Station Series を複数機種、複数台使用時マスター機となり • MULTI 他のスレーブ機を同期制御します

5. スレーブ器として設定します。

スレーブ器

6. マスタ器として設定します。 マスタ器

7. メニューページ画面1から抜けます。 「MENU」キーあるいは「CE」キーを押します。 MENU(CE) キーON -30L 15 30 15 nnn. $000 \circ$ UUUUA <u>س</u>

23

CC 0.0000 A IV

9.2.4 接続機器の確認

接続されているスレーブ器を確認します。

スレーブ器の確認

9.2.5 マルチチャンネル同期運転のアラーム

マルチチャンネル同期運転中にアラームが発生すると、エラーメッセージが表示され、アラームが 発生した器がロードオフになります。速やかにアラーム要因を取り除いてください。警告後、異臭や 異音などの故障と思われる症状が発生していた場合は、速やかに使用を中止し、修理の依頼をしてく ださい。

スレーブ器でアラームが発生した場合は、スレーブ器にエラーメッセージが表示され、ロードオフ になりますが、マスタ器がロードオン状態である場合、スレーブ器は、アラームの解除直後ロードオ ンになります。アラームの解除はマスタ器でロードオフしてから解除してください。

9.2.6 マルチチャンネル同期運転の解除

マスタ器として使用したものを単独動作に戻す場合は、設定方法に従ってメニュー設定で「NORMAL」 に戻してください。

スレーブ器

マルチチャンネル同期運転から単独運転に戻すときは、各器の電源をオフにした後、BOOSTER 接続 ケーブルを外してください。

第10章 仕 様

仕様は、特に指定が無い場合、下記の条件となります。 ・ウォームアップ時間 30 分以上。 ・温度:23℃±5℃、湿度 70%以下。

10.1 一般仕様

一般仕様		ELL-355
	負荷端子	フロント・パネル入力
	定格入力電圧	AC100~240V±10% 50/60Hz
	消費電力	45VA以下 (AC100V時)
	使用温度	5°C~40°C
	冷却方式	ファンによる強制空冷
	寸法	215(W)×128.6(H)×420(D) 突起物含まず
	重量	約10Kg

一般仕様		ELL-1005
	負荷端子	フロント・パネル入力
	定格入力電圧	AC100~240V±10% 50/60Hz
-	消費電力	70VA以下 (AC100V時)
	使用温度	5°C~40°C
	冷却方式	ファンによる強制空冷
	寸法	430(W)×128.6(H)×420(D) 突起物含まず
	重量	約16Kg

インターフェース		ELL-355
GPIB		IEEE488.1に準拠
	USB	USB1.1に準拠
	外部制御電圧	入力電圧:0V~10V

インターフェース		ELL-1005	
GPIB		IEEE488.1に準拠	
	USB	USB1.1に準拠	
	外部制御電圧	入力電圧:0V~10V	

保護・ア	ラーム機能	ELL-355
	過電流保護	電流リミット機能で制限を行い負荷部を保護します
	過電力保護	電力リミットで制限を行い負荷部を保護します
	過電圧アラーム	過電圧印加時にアラームを発生します
	温度保護	置内温度上昇時にアラームを発生し出力をオフして負荷部を保護しま
	逆接続アラーム	逆接続時にアラームを発生します

保護・ア	ラーム機能	ELL-1005
	過電流保護	電流リミット機能で制限を行い負荷部を保護します
	過電力保護	電力リミットで制限を行い負荷部を保護します
	過電圧アラーム	過電圧印加時にアラームを発生します
	温度保護	置内温度上昇時にアラームを発生し出力をオフして負荷部を保護しま
	逆接続アラーム	逆接続時にアラームを発生します

*)過電圧、逆接続アラーム機能は、警告のみで負荷部を保護しませんので速やかにアラーム要因を 取り除いてください。

10.2 測定部

古 法 雪 **正** 測 完

直流電圧測定		ELL-355		
	レンジ		4.0000V	30.000V
	分解能		0.1mV	1.0mV
	確度	(※1)	±0.05% of rdg	. ±0.05% of fs.
	測定時間	(**2)	約10	00ms

直流電圧測定		ELL-1005		
	レンジ		4.0000V	30.000V
	分解能		0.1mV	1.0mV
	確度	(※1)	±0.05% of rdg	. ±0.05% of fs.
	測定時間	(**2)	約 10	00ms

直流電流測定		ELL-355		
	レンジ	(**3)	15.0000A	135.000A
	分解能		0.1mA	1mA
	確度	(※1)	±0.2% of rdg	. ±0.2% of fs.

直流電流測定		ELL-1005		
	レンジ	(**3)	45.0000A	405.000A
	分解能		0.3mA	3mA
	確度	(※1)	±0.2% of rdg	. ±0.2% of fs.
	測定時間	(※2)	約10	00ms

電力測定			ELL-355
測定方式 (※4)		(**4)	演算方式 [電圧測定値×電流測定値]
	測定時間	(**2)	約200ms

電力測定			ELL-1005
	測定方式	(※4)	演算方式 [電圧測定值×電流測定值]
	測定時間	(※2)	約200ms

※1 周囲温度 23±5℃ 湿度70%以下において6ケ月間保証します。 ※2 同一測定モードとレンジの場合の測定時間です。 ※3 電流測定レンジは、選択している負荷設定レンジにより決定されます。 ※4 測定結果を絶対値で返します。

10.3 負荷部

最大定格		ELL-355
	電流	135A
	電圧	30V
	内部最小抵抗	$3 \mathrm{m} \Omega$
	内部インダクタンス(Typ)	80nH
	最小動作電圧(※6)	0.4V(135A)/0.2V(67.5A)/0.1V(33.75A)
	ビーク電力 (※5)	4000W(20 µ s以内)
		430W(20秒以内)
	定格電力	350W

最大定格		ELL-1005
	電流	405A
	重	30V
	内部最小抵抗	$1.5 \mathrm{m}\Omega$
	内部インダクタンス(Typ)	80nH
	最小動作電圧(※6)	0.6V(405A)/0.3V(202.5A)/0.1V(67.5A)
		12000W(20 µ s以内)
		1290W(20秒以内)
	定格電力	1000W

定電流モード		ELL-355	
電流レンジ		15A	135A
	設定範囲	0~15A	0~135A
	公称分解能 (※1)	1mA	10mA
	確度	±0.2% of stg. ±15mA	±0.2% of stg. ±60mA

定電流モード		ELL-1005	
電流レンジ		45A	405A
	設定範囲	0~45A	0~405A
	公称分解能 (※1)	3mA	30mA
	確度	$\pm 0.2\%$ of stg. ± 60 mA	±0.2% of stg. ±500mA

定抵抗モード			ELL-355		
	電圧レンジ		4V		
	電流レンジ		15A	135A	
	抵抗レンジ	(設定範囲)	$0.05\Omega{\sim}500\Omega$	$5\mathrm{m}\Omega{\sim}50\Omega$	
	公称分解能	(※1)	2mS	20mS	
	確度 (※2)		±0.5% of Conv. Curr. ±0.2% of fs.		
	電圧レンジ		30V		
	電流レンジ		15A	135A	
	抵抗レンジ	(設定範囲)	0.15Ω~1500Ω	$0.015\Omega{\sim}150\Omega$	
	公称分解能	(※1)	666 μ S	6.66mS	
	確度	(※2)	±0.5% of Conv.C	turr. ±0.2% of fs.	

定抵抗モ	定抵抗モード			ELL-1005		
	電圧レンジ			4V		
	電流レンジ			45A	405A	
	抵抗レンジ		(設定範囲)	$0.0167 \Omega \sim 166.667 \Omega$	$1.7\mathrm{m}\Omega{\sim}16.667\Omega$	
	公称分解能	(※1)		6mS	60mS	
	確度	()*2)		±0.5% of Conv.C	urr.±0.2% of fs.	
	電圧レンジ			30V		
	電流レンジ			45A	405A	
	抵抗レンジ		(設定範囲)	$0.05\Omega \sim 500\Omega$	$0.005\Omega{\sim}50\Omega$	
	公称分解能	(※1)		1998 _µ S	19.98mS	
	確度	(※2)		±0.5% of Conv.C	turr. ±0.2% of fs.	

定電圧モ <u>ード</u>		ELL	-355
	電圧レンジ	4V	30V
設定範囲		$0 \sim 4 V$	0~30V
	公称分解能 (※1)	0.5mV	5mV
確度		±0.2% of stg. ±0.2% of fs.	
	応答時間	Fast / Slow (300 μ s/10ms)	

定電圧モ <u>ード</u>		ELL-1005	
	電圧レンジ	4V	30V
設定範囲		$0\sim 4V$	0~30V
	公称分解能 (※1)	0.5mV	5mV
確度		$\pm 0.2\%$ of stg. $\pm 0.2\%$ of fs.	
	応答時間	Fast / Slow (300 μ s/10ms)	

定電力モード							
	電流レンジ		15A	135A			
	電力レンジ	(設定範囲)	0~40W	0~350W			
	公称分解能	(※1)	5mW	25mW			
	確度		±2.5% of st	g±1% of fs.			

定電力モード			ELL-1005	
	電流レンジ		45A	405A
	電力レンジ	(設定範囲)	0~120W	0~1000W
	公称分解能	(※1)	15mW	75mW
	確度		±2.5% of st	g.±1% of fs.

外部制御モード		ELL	ELL-355	
電流レンジ		15A	135A	
	設定範囲	0~15A	0~135A	
	公称分解能 (※1)	2mA	20mA	
確度 (※4)		$\pm 0.2\%$ of stg. $\pm 0.5\%$ of fs.		
	制御電圧	$0 \mathrm{V} \sim 10 \mathrm{V}$		

外部制御モード		ELL-1005	
	電流レンジ	45A	405A
設定範囲		0~45A	0~405A
	公称分解能 (※1)	6mA	60mA
	確度 (※4)	$\pm 0.2\%$ of stg. $\pm 0.5\%$ of fs.	
	制御電圧	$0V \sim 10V$	

動的負荷モード	ELL	-355
ダイナミックモード		
電流レンジ	15A	135A
制御方式	スイッチ	ング動作
動作負荷制御モード	CC/CR/CV	/CPモード
設定周期	~20ms / ~200ms /	~2s / ~20s / ~60s
周期分解能	1 µs / 10 µs / 100	μs/1ms/10ms
動作モード	連続、	単発
スルーレート(※11)	0.05 A/ μ s~5A/ μ s	$0.5 \text{A}/\mu \text{s}{\sim}50 \text{A}/\mu \text{s}$
最小負荷応答時間(※3,12)	500)ns
シーケンスモード		
動作負荷制御モード	CC/CR/CV	/CPモード
最大ステップ数	10	24
ステップ時間	1ms ~	10min
ステップ時間分解能	lms(lms \sim 100ms) / 1 $^{\circ}$	00ms(100ms \sim 10min)

動的負荷モード	ELL-1005	
ダイナミックモード		
電流レンジ	45A	405A
制御方式	スイッチ	ング動作
動作負荷制御モード	CC / CR / CV	7/CPモード
設定周期	\sim 20ms / \sim 200ms /	\sim_{2s} / \sim_{20s} / \sim_{60s}
周期分解能	1μs / 10μs / 100	μs / 1ms / 10ms
動作モード	連続、	単発
スパーレート (※11)	$0.05 \text{A}/\mu\text{s}$ \sim 5 $\text{A}/\mu\text{s}$	$0.5 A/\mu { m s}{\sim}50 { m A}/\mu { m s}$
最小負荷応答時間(※3,12)	500	Ons
シーケンスモード		
動作負荷制御モード	CC / CR / CV	/ CP モード
最大ステップ数	10	24
ステップ時間	$1\mathrm{ms}$ \sim	10min
ステップ時間分解能	$1 \mathrm{ms}(\mathrm{lms}\sim 100 \mathrm{ms})$ / 10	$00 \mathrm{ms}(100 \mathrm{ms} \sim 10 \mathrm{min})$

ショートモード	ELL-355
ショート電流 (MAX)	135A
ショートモード	ELL-1005
ショート電流 (MAX)	405A

電流リミ	ット設定	ELL-355	
	電流レンジ	15A	135A
	設定範囲	0.1A~15A	1A~135A
	公称分解能 (※1)	100mA	1A

電流リミ	ット設定	ELL-1005	
	電流レンジ	45A	405A
	設定範囲	0.3A~45A	3A~405A
	公称分解能 (※1)	300mA	3A

並列運転

マスタ機として設定した本機1台に対し、スレーブ機として設定した他機を並列接続する方法です。 並列接続できるスレーブ機は、マスタ機と同じ耐圧の機種(マスタ機がELA-305であればELA-155、ELA-305、 ELA-1005が対象)、4台まで可能です。

※1 公称分解能とは、各設定モードで想定している分解能の概算をを示します。

※2 Conv.Curr は、『入力電圧 / 設定抵抗値』の理想電流値を示します。

※3 最小負荷応答時間とは、スルーレート設定において応答可能な最小値。

※4 外部制御モードの設定確度は、制御電圧入力10V時のみとなります。

※520℃環境温度時の目標値です。電子負荷装置を使用する環境温度(装置内温度)

及び動作時間により変化します。

※6 電流値により最小動作電圧は変化します。

※11 定電流モード時のみ設定可能です。CVモードでは最大値設定と最小値設定を選択できます。 CR/CPモードでは設定できません。

※12 定電流モードの場合

10.4 出力部

TRIG OUT仕様			ELL-355	
	出力 (※1)		フォトカプラ出力	
出力電圧	山力雪口	CC1	+5V(Typ)	
	山乃电江	CC2	0V(Typ)	

TRIG OUT仕様			ELL-1005	
出力 (※1)			フォトカプラ出力	
出力電圧	山力雪口	CC1	+5V(Typ)	
	山刀电压	CC2	0V(Typ)	

CURRENT	MONITER仕様	ELL-355
	出力 (※2)	1V/135A f.s.
	出力インピーダンス	50 Ω
	確度 (※3)	$\pm 1\%$ of Conv.Volt. $\pm 1\%$ of fs.

CURRENT	MONITER仕様	ELL-1005
	出力 (※2)	1V/405A f.s.
	出力インピーダンス	50Ω
	確度 (※3)	$\pm 1\%$ of Conv.Volt. $\pm 1\%$ of fs.

※1 TRIG OUT出力はアイソレーションされています。

※2 CURRENT MONITER出力はアイソレーションされていません。

※3 Conv. Volt は、『測定電流値×(電流モニターfs/定格電流)』の換算電圧値を示します。

<u>10.5 外形寸法図</u>

図 10-5-2 Load Edge Series (ELL-1005) 外形図

10.6 動作領域

本器の動作領域について、低電圧動作領域とピーク電力動作領域を図示します。

図 10-6-1 ELL-355 動作領域

図 10-6-2 ELL-1005 動作領域

※電子負荷を使用する環境温度(装置内温度)及び動作時間により変化します。

第11章 保守·校正

長期にわたり、御利用いただくために、定期的な保守・点検を行ってください。

11.1 清 掃

本器の汚れは、やわらかい布または、湿らせた布で適宣に拭きとってください。

11.2 ヒューズの交換

本器には電源ヒューズがあり、交換時には以下の手順に従い交換してください。

下図に示すように、電源ヒューズを取り出し、ヒューズ交換を行ってください。 本器では製造の都合上、ヒューズの実装数によってシングルタイプとダブルタイプの2種類 混在しています。タイプにより取り外し方法が異なります。ご注意ください。

・シングルタイプ

・ダブルタイプ

11.3 入力電源コード

被覆の破れやプラグのがた、割れなどがないか確認・点検してください。

被覆の破れなどがありますと、感電の危険があります。すぐに使用を中止してくだ さい。

付属品の購入は、購入元の代理店または弊社までお問い合わせください。

11.4 校 正

•

本器に関する校正は、購入元の代理店または弊社までご依頼ください。

11.5 保管

本器を長時間使用しない場合は、ビニール・カバーに被せたり、ダンボールに入れる等を行い、埃を防ぎ、直射日光の当たらない、乾燥した場所に保管してください。 保存温度範囲は、0~50℃です。

Load Edge High Performance Electronic Load Series ELL-355/1005 OPERATION MANUAL

M-2161 Rev2.0

発行日 2008年6月9日

株式会社 計測技術研究所 住所:〒224-0037 横浜市都筑区茅ヶ崎南 2-12-2 URL <u>http://www.keisoku.co.jp/</u>

本製品についてのお問い合わせに付きましては以下にご連絡ください。

営業的なお問い合わせ TEL: 045-948-0211 FAX: 045-948-0221

E-mail: <u>PWsales@hq.keisoku.co.jp</u>

技術的なお問い合わせ TEL: 045-948-0214 FAX: 045-948-0224

E-mail: <u>PW-support@hq.keisoku.co.jp</u>